# Synthesis and Hybridization Properties of Oligodeoxynucleotides with Long-Chain Linkers 

by Kohji Seio $\left.{ }^{\text {a }}\right)^{\text {b }}$ ), Takeshi $\left._{\text {Terada }}{ }^{\text {b }}\right)^{\text {c }}$ ), Masahiro Mizuta ${ }^{\text {b }}$ ), Akihiro Ohkubo $\left.{ }^{\text {b }}\right)^{\text {c }}$ ), Haruhiko Taguchi ${ }^{\text {b }}{ }^{\text {c }}$ ), and Mitsuo Sekine* ${ }^{* b}{ }^{\mathrm{c}}$ )<br>${ }^{\text {a }}$ ) Frontier Collaborative Research Center, Tokyo Institute of Technology<br>${ }^{\text {b }}$ ) CREST, Japan Science and Technology Agency (JST)<br>${ }^{c}$ ) Department of Life Science, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Japan (phone: +81-45-924-5706; fax: +81-45-924-5772; e-mail: msekine@bio.titech.ac.jp)


#### Abstract

New oligonucleotides with a long-chain linker (6,9-dioxa-3,12-diazatetradecane-1,14-diyl) in their backbone were synthesized, and their hybridization properties were studied by measurement of their $T_{\mathrm{m}}$ curves and fluorescence spectra. The $T_{\mathrm{m}}$ analyses revealed that these oligonucleotides could bind to their complementary strands despite the presence of the long-chain linker. We also demonstrated interesting fluorescence properties of oligodeoxynucleotides with an anthracen-9-ylmethyl group on one of the two N -atoms in the long-chain linker. The fluorescence intensity of these oligonucleotides increased upon their hybridization to the complementary strands and was sensitive to the presence of the mismatch base pairs at a specific position.


1. Introduction. - Various modifications of phosphodiester backbones have been reported in which substituents without P -atoms have been used to develop functional oligodeoxynucleotides (ODNs). These modifications included amides [1], hydroxylamines [2][3], formacetals [4-8], carbonates [9][10], ureas and carbamates [11], squaramides [12][13], and guanidines [14]. In most of these examples, the phosphate surrogates were designed to be isosteric to the phosphodiester structure so that they could connect the up and downstream nucleoside residues without distortion of the original structure. On the other hand, there are some studies of replacement of the phosphodiester backbone with long-chain linkers such as polyethylene glycols in both DNA and RNAs [15-30]. Oligonucleotides with such long-chain linkers have been developed for structural studies of hairpin loops [15-18], triplexes [17][19-21], ribozymes [22][23], gap-DNAs [24], CpG motifs [25], circular DNAs [26][27], and structured RNAs [28][29]. The duplex formation of oligonucleotides with long-chain linkers has also been described [30].

In this paper, we report the synthesis of new modified 15mer ODNs - ODN1, ODN2a, ODN2b, ODN3a, and ODN3b - that have a 6,9-dioxa-3,12-diazatetradecane-1,14-diyl group as a long-chain linker in their backbone (see below, Fig. 1), and a study of their hybridization affinity for natural-type 15 mer targets ODN4-9 (see below, Fig. 2). Because both the modified and natural-type target ODNs have the same number of nucleotide residues, the entire structure of the long-chain linker can be expected to drastically change its conformation upon binding to the targets. Such
conformation change synchronizing with the hybridization might confer interesting properties on the modified ODNs. Keeping such possibilities in mind, we synthesized and studied the properties of the modified ODNs. The $T_{\mathrm{m}}$ analyses revealed the significant affinity of ODN1 for its complementary strand despite the presence of the long-chain linker.

We also found interesting fluorescence properties of the ODNs with an anthracen9 -ylmethyl group on their backbone (ODN2a,b, and ODN3a,b) that might be useful for the detection of single-base mismatches by fluorescence spectroscopy. To substitute the long-chain linker part with a fluorescent anthracene moiety, we designed a linker with secondary amino functions as shown below in Fig. 1. The introduction of the fluorescent group made it possible to monitor the hybridization of the modified ODNs by fluorescence spectroscopy.
2. Results and Discussion. - 2.1. Synthesis of Dimer 1. The thymidine dimer 1 with the long-chain linker (see below, Fig. 1) was synthesized by the coupling of the $5^{\prime}$ halfunit 3 (Scheme 1) and the $3^{\prime}$ half-unit $\mathbf{8}$ (see Schemes 2 and 3) by reductive amination. The $5^{\prime}$ half-unit 3 was synthesized from $5^{\prime}-O-\left(4,4^{\prime}\right.$-dimethoxytrityl)thymidine by treatment with 2.2 equiv. of NaH and prop-2-en-1-yl bromide to give the $3^{\prime}-O$-propenyl derivative 2 in $70 \%$ yield (Scheme 1). Compound 2 was then oxidized with a catalytic amount of $\mathrm{OsO}_{4}$ in combination with 1.2 equiv. of $\mathrm{NaIO}_{4}$, giving the desired $3^{\prime}-O-$ (formylmethyl) derivative $\mathbf{3}$ in $80 \%$ yield.

Scheme 1. Synthesis of the 5' Half-unit 3





$$
\xrightarrow[\begin{array}{c}
\text { dioxane/ } / \mathrm{H}_{2} \mathrm{O} 3: 1 \\
\text { r.t., dark, } 13 \mathrm{~h}
\end{array}]{1.2 \text { equiv. } \mathrm{NaIO}_{4}}
$$



The $3^{\prime}$ half-unit $\mathbf{8}$ was synthesized as shown in Schemes 2 and 3. We first synthesized the $5^{\prime}-O$-(formylmethyl) derivative $\mathbf{5}$ via $\mathbf{4}$ according to a procedure similar to that
shown in Scheme 1 by the use of $3^{\prime}-O-[($ tert-butyl) dimethylsilyl]thymidine in place of $5^{\prime}-O$-(4,4'-dimethoxytrityl)thymidine (Scheme 2). Next, we examined the reductive amination of 5 with amine 6 [31], which proceeded most successfully when $\mathrm{NaBH}(\mathrm{OAc})_{3}$ was used as a reducing agent in $\mathrm{CHCl}_{3}$ (Scheme 3). In this case, compound 7 was obtained in $84 \%$ yield. The reducing agents $\mathrm{BH}_{3} \cdot$ pyridine complex and $\mathrm{NaBH}_{4}$ were not effective. Among several solvents tested, $\mathrm{CHCl}_{3}$ gave the best results. Interestingly, the use of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in place of $\mathrm{CHCl}_{3}$ resulted in a worse result, giving the desired compound 7 in only $40 \%$ yield. Compound 7 thus obtained was treated with $3 \%$ trichloroacetic acid to give the $3^{\prime}$ half-unit $\mathbf{8}$ in $88 \%$ yield. Finally, compound $\mathbf{8}$ was coupled with the $5^{\prime}$ half-unit $\mathbf{3}$ under conditions similar to those of the above-mentioned reductive amination to furnish dimer 9 in $54 \%$ yield, which was deprotected by acid treatment to give dimer $\mathbf{1}$ in $88 \%$ yield.

2.2. Synthesis of Phosphoramidites. Next, we tried to synthesize the phosphoramidite derivatives $\mathbf{1 2}, \mathbf{1 8 a}$, and $\mathbf{1 8 b}$ from the synthetic intermediates described above. Phosphoramidites 18a and 18b were designed to monitor the hybridization of oligodeoxynucleotides incorporating the long-chain linker by the use of the fluorescent signal of anthracene.

The phosphoramidite $\mathbf{1 2}$ was synthesized starting from the protected dimer 9 (Scheme 4). The ${ }^{t} \mathrm{BuMe}_{2} \mathrm{Si}$ group of $\mathbf{9}$ was removed by treatment with $\mathrm{Bu}_{4} \mathrm{NF}$ to give $\mathbf{1 0}$ in $91 \%$ yield. The two secondary-amine moieties were both protected with a trifluoroacetyl group by treatment with trifluoroacetic anhydride to give $\mathbf{1 1}$ in $83 \%$ yield, and the remaining OH group of $\mathbf{1 1}$ was phosphitylated by the phosphorodiamidite reagent to give $\mathbf{1 2}$ in $76 \%$ yield.

We also synthesized phosphoramidite 18a according to the procedure shown in Scheme 5. The alkylation of compound 7 with 9-(chloromethyl)anthracene in DMF gave $\mathbf{1 3}$ in $64 \%$ yield. The ( MeO ) Tr group of $\mathbf{1 3}$ was removed by treatment with $3 \%$

Scheme 3. Synthesis of the 3' Half-unit $\mathbf{8}$ and Dimer 9


$\mathrm{CCl}_{3} \mathrm{COOH}$ to give $\mathbf{1 4}$ in $93 \%$ yield. Subsequently, the primary-amine function of $\mathbf{1 4}$ was condensed with compound $\mathbf{3}$ by applying conditions similar to those used for the above-mentioned reductive amination, to give dimer 15 in $55 \%$ yield. Subsequently, the ${ }^{t} \mathrm{BuMe}_{2} \mathrm{Si}$ group of $\mathbf{1 5}$ was removed by treatment with $\mathrm{Bu}_{4} \mathrm{NF}(\rightarrow \mathbf{1 6})$, and the secondary-amino group was protected by a $\mathrm{CF}_{3} \mathrm{CO}$ group $(\rightarrow \mathbf{1 7})$. Finally, the $3^{\prime}-\mathrm{OH}$ group was phosphitylated to give the desired phosphoramidite 18a. Compound 18a was unstable under purification procedures such as gel-filtration column chromatography, probably because of the presence of the basic amine part. This compound, however, could be used successfully in the ensuing oligonucleotide synthesis without further purification.

Next, we synthesized the phosphoramidite 18b (Scheme 6). In the synthesis of 18b, we used the new protected amine $\mathbf{1 9}$ in place of amine $\mathbf{6}$ because the tritylthio ( TrS ) group [32-37] of $\mathbf{1 9}$ could be selectively removed by a radical reduction [34] without damaging the $(\mathrm{MeO})_{2} \operatorname{TrO}$ group at the $5^{\prime}$-position of the nucleoside, as described below. One of the amino groups of 2,2'-[ethane-1,2-diylbis(oxy)]bis[ethanamine] was protected by the TrS group according to the procedure reported previously [32][34]. The protected amine $\mathbf{1 9}$ was obtained in $55 \%$ yield and coupled with the $3^{\prime}-O-$ (formylmethyl) derivative $\mathbf{3}$ by reductive amination. Alkylation of the secondaryamine function of $\mathbf{2 0}$ with 9-(chloromethyl)anthracene gave $\mathbf{2 1}$ in $77 \%$ yield.



$\mathrm{DMTr}=(\mathrm{MeO})_{2} \mathrm{Tr}$

Subsequently, the TrS group was removed by reduction with tributylstannane to give $\mathbf{2 2}$ in $50 \%$ yield without damaging the $(\mathrm{MeO})_{2} \mathrm{Tr}$ group [34]. The amine $\mathbf{2 2}$ was condensed with the $5^{\prime}-O$-(formylmethyl) derivative $\mathbf{5}$ by reductive amination to give $\mathbf{2 3}$ in $43 \%$ yield. The ${ }^{\dagger} \mathrm{BuMe}_{2} \mathrm{Si}$ group of $\mathbf{2 3}$ was removed by treatment with $\mathrm{Bu}_{4} \mathrm{NF}$, and the amino group was protected by a $\mathrm{CF}_{3} \mathrm{CO}$ group. Finally, the $3^{\prime}-\mathrm{OH}$ group was phosphitylated to give the desired phosphoramidite 18b. Like phosphoramidite 18a, this compound was unstable during the purification procedure and had to be used without further purification for oligonucleotide synthesis.
2.3. Oligonucleotide Synthesis. By the use of the phosphoramidites 12, 18a, and 18b, the oligonucleotides ODN1 (Fig. 1), ODN2a, ODN2b, ODN3a, and ODN3b (Figs. 1 and 2) were synthesized. The $3^{\prime}$ half of each DNA, $5^{\prime}-\mathrm{d}\left(\mathrm{Y}^{1} \mathrm{Y}^{2}\right.$ TCGAG) $\mathbf{3}^{\prime}$, was synthesized on CPG (controlled-pore glass) supports with a commercially available DNA synthesizer. After the $(\mathrm{MeO})_{2} \operatorname{Tr}$ group at the $5^{\prime}$-terminal nucleotide $\left(\mathrm{Y}^{1}\right)$ was removed, the CPG resin was transferred to a glass syringe. The dimer phosphoramidites with the long-chain linker ( $\mathbf{1 2}, \mathbf{1 8 a}$, and $\mathbf{1 8 b}$ ) were then used for further chain elongation by a manual coupling procedure. Subsequently, the CPG supports were again transferred to the reaction vessel of the DNA synthesizer, and the $5^{\prime}$-half part of each DNA, $5^{\prime}-\mathrm{d}\left(\mathrm{GCTCX}^{1} \mathrm{X}^{2}\right)-3^{\prime}$, was elongated in the synthesizer. After cleavage of the oligonucleotide from the solid support, all protecting groups at the nucleobases and phosphate groups and at the amino groups were removed by treatment with aqueous ammonia. The structures of the oligonucleotides thus obtained were confirmed by MALDI-TOF-MS analyses.
Scheme 5. Synthesis of Phosphoramidite 18a


Scheme 6. Synthesis of Phosphoramidite 18b



1

$$
\begin{array}{ll}
\text { ODN1 } & X^{1}=A, X^{2}=G, Y^{1}=G, Y^{2}=A \\
& R^{1}=R^{2}=H \\
\text { ODN2a } & X^{1}=A, X^{2}=G, Y^{1}=G, Y^{2}=A \\
& R^{1}=H, R^{2}=\text { anthracen-9-ylmethyl } \\
\text { ODN2b } & X^{1}=A, X^{2}=G, Y^{1}=G, Y^{2}=A \\
& R^{1}=\text { anthracen-9-ylmethyl, } R^{2}=H \\
\text { ODN3a } & X^{1}=C, X^{2}=T, Y^{1}=A, Y^{2}=G \\
& R^{1}=H, R^{2}=\text { anthracen-9-ylmethyl } \\
\text { ODN3b } & X^{1}=C, X^{2}=T, Y^{1}=A, Y^{2}=G \\
& R^{1}=\text { anthracen-9-ylmethyl, } R^{2}=H
\end{array}
$$

Fig. 1. Structure of the dimer unit $\mathbf{1}$ and the oligodeoxynucleotides with long-chain linkers
2.4. Hybridization Properties of Oligodeoxynucleotides with Long-Chain Linkers. We first measured the UV melting curve of the duplex of ODN1, i.e., 5'$\mathrm{d}(\mathrm{GCTCAG}[\mathrm{tt}] G A T C G A G)-3^{\prime}$, where [ tt ] represents the dithymidine unit derived from 1 and introduced by means of $\mathbf{1 2}$, with the complementary strand ODN4, i.e., $5^{\prime}-$ d(CTCGATCAACTGAGC)-3' (Fig. 2). We also measured the $T_{\mathrm{m}}$ value of the duplex of the unmodified DNA strand ODN5 ${ }^{\prime}$, i.e., $5^{\prime}-\mathrm{d}(\mathrm{GCTCAGTTGATCGAG})-3^{\prime}$, with ODN4 to clarify the effect of the modification on the melting temperature. Although the $T_{\mathrm{m}}$ value of the ODN1- ODN4 duplex was lower by $9^{\circ}$ than that of the natural-type duplex, as shown in the Table, it was clearly revealed that ODN1 could hybridize with the target sequence despite the presence of the long-chain linker in its backbone.

Table. $\mathrm{T}_{m}$ Values of Modified (ODN1) and Natural-Type (ODN5') Duplexes

|  | ODN1•ODN4 | ODN5' $\cdot$ ODN4 |
| :--- | :--- | :--- |
| $T_{\mathrm{m}}\left[^{\circ}\right]$ | 48 | 57 |




| Modified DNA (5' to $3^{\prime}$ ) |  |
| :---: | :---: |
| ODN2a | $\mathrm{d}\left(\mathrm{GCTCAG}\left[\mathrm{tt}^{*}\right]\right.$ GATCGAG) |
| ODN2b | $\mathrm{d}\left(\mathrm{GCTCAG}\left[{ }^{*} \mathrm{*}\right]\right.$ ]ATCGAG) |
| ODN3a | $\mathrm{d}\left(\mathrm{GCTCCT}\left[t{ }^{*}\right]\right.$ ]GTCGAG) |
| ODN3b | d (GCTCCT[ $\pm^{*}$ * $]$ AGTCGAG) |
| Complementary targets ( $3^{\prime}$ to $5^{\prime}$ ) |  |
| ODN4 | d(CGAGTCAACTAGCTC) |
| ODN5 | d(CGAGGAAATCAGCTC) |
| ODN5' | d(GAGCTAGTTGACTCG) |

Mismatch targets of ODN3a ( $3^{\prime}$ to $5^{\prime}$ )
ODN6 d(CGAGGAAATCCGCTC)
ODN7 d(CGAGGAAATIAGCTC)
ODN8 d(CGAGGAAACCAGCTC)
ODN9 d(CGCGGAAATCAGCTC)

Fig. 2. Sequences of the oligonucleotides used in this study. The abbreviations $t^{*} *$ and $t * t$ refer to the modified thymidine dimers. ODN4 is complementary to ODN2a and ODN2b. ODN5 is complementary to ODN3a and ODN3b. ODN6 - 9 are mismatched targets for ODN3a. The mismatch sites are indicated by underlines.

Next, we studied the hybridization properties of oligodeoxynucleotides ODN2a, ODN2b, ODN3a, and ODN3b (Figs. 1 and 2) in more detail by measurement of the fluorescence of the anthracene moiety of these oligonucleotides. ODN2a and ODN2b have almost identical structures, except that ODN2a has an anthracene-9-ylmethyl group at the N -atom of the long-chain linker closer to the $3^{\prime}$ terminus, as represented by [tt*] (Fig. 2), and ODN2b has the same fluorescent aromatic group at the N -atom nearer to the $5^{\prime}$ terminus, as represented by $[t * t]$. We also synthesized the oligonucleotides ODN3a and ODN3b with $-\mathrm{CT}[\mathrm{tt} *] \mathrm{AG}-$ and $-\mathrm{CT}[\mathrm{t} * \mathrm{t}] \mathrm{AG}-$ sequences in place of the $-\mathrm{AG}[\mathrm{tt*}] \mathrm{GA}-$ and $-\mathrm{AG}[\mathrm{t} * \mathrm{t}] \mathrm{GA}$ - sequences of ODN2a and ODN2b, respectively, to explore the effect of the nearby guanine residue on the fluorescence intensity of the anthracene moiety. ODN4 is the complementary strand of ODN2a and ODN2b, and ODN5 is that of ODN3a and ODN3b.

First we measured the fluorescence intensities of ODN2a, ODN2b, ODN3a, and ODN3b in their single-strand states in various pH regions. The results are shown on the left-hand side of Fig. 3. As the pH value of the solution increased, the fluorescence intensity decreased in all cases. These observations agree with the fact that the fluorescence of the anthracene moiety is quenched by the nearby lone pair on the N atom, and the quenching is suppressed by protonation of the N -atom [38-43]. Moreover, comparison between ODN2a and ODN2b revealed that ODN2a with the anthracene moiety at the N -atom closer to the $3^{\prime}$ terminus showed approximately twice as much fluorescence in all pH regions. This trend was also seen for the fluorescence intensities of ODN3a and ODN3b.

As expected, ODN2a and ODN2b, having guanine residues at the nearest-neighbor positions of the $\mathrm{tt}^{*}$ and $\mathrm{t}^{*} \mathrm{t}$ dimer units, showed lower fluorescence intensity in comparison with ODN3a and ODN3b, respectively. These results suggest that the fluorescence of the anthracene moiety was quenched by the guanine residue.


Fig. 3. Fluorescence intensities of $O D N \mathbf{2 a}, O D N \mathbf{2 b}, O D N \mathbf{3 a}$, and $O D N \mathbf{3 b}$ in the presence and absence of their complementary targets

Next, we measured the fluorescence spectra of ODN2a, ODN2b, ODN3a, and ODN3b in the presence of their complementary strands ODN4 and ODN5. Interestingly, upon addition of these complementary strands, the fluorescence intensities increased about 2 -fold in all pH regions. It is well known that the fluorescence of the anthracene moiety is quenched by interaction with DNA strands
[44-46]. Therefore, the observed intensity increases suggested that the anthracene moiety on the long-chain linker was more accessible to the nucleobases in the singlestrand state than in the double-strand state. Yamana and co-workers also reported that the fluorescence of the anthracene moiety introduced to the $2^{\prime}$ position of RNA derivatives increased similarly upon hybridization to the DNA and RNA targets [46]. The observed increases in fluorescence intensities suggested to use the anthracenemodified oligonucleotides reported in this study as oligonucleotide probes for hybridization sensing.

Therefore, we examined the fluorescence properties of the most strongly fluorescent ODN3a upon the addition of the target oligonucleotides with a mismatched base (ODN6-9), and compared the fluorescence intensity with that of the fully matched ODN3a•ODN5 duplex (Fig. 4). Here, ODN3a • ODN6 has a T• C mismatch at the third position from the tt * unit, ODN3a•ODN7 has a G•T mismatch at the second position, ODN3a $\cdot$ ODN9 has a $\mathrm{T} \cdot \mathrm{C}$ mismatch at the fourth position, and ODN3a • ODN8 has an A•C mismatch at the position next to the tt * unit. Interestingly, the mismatch-containing duplexes ODN3a•ODN9, ODN3a•ODN7, and ODN3aODN6 showed fluorescence spectra almost identical to that of the fully matched duplex ODN3a $\cdot$ ODN5. In contrast, the duplex ODN3a $\cdot$ ODN8, containing an $\mathrm{A} \cdot \mathrm{C}$ mismatch near $\mathfrak{t t}^{*}$ had significantly lower fluorescence intensity than the others. This observation indicates that the fluorescence intensity of the anthracene moiety in ODN3a is very sensitive to the loss of the Watson-Crick base pair only at the neighboring position. Although the detailed mechanism of this fluorescence change was not clear, the interesting properties of ODNs containing $\mathrm{tt}^{*}$ might enable them to be used as modified oligonucleotide probes for mismatch detection.


Fig. 4. Fluorescence intensities of duplexes of ODN3a with the target strands ODN6-9
3. Conclusions. - In this work, we synthesized new oligonucleotides with a 6,9-dioxa-3,12-diazatetradecane-1,14-diyl long-chain linker in their backbone and studied their hybridization properties by measurement of their $T_{\mathrm{m}}$ curves and fluorescence spectra. It should be noted that oligonucleotides with such long linkers could hybridize with their target strands. The $T_{\mathrm{m}}$ analysis by use of ODN1 revealed the ability of this oligonucleotide to bind its complementary strand despite the presence of the longchain backbone. In addition, we demonstrated the interesting fluorescence properties of oligodeoxynucleotides with an anthracen-9-ylmethyl group at one of the two N atoms in the long-chain linker. The fluorescence intensity of the oligonucleotides ODN2a, ODN2b, ODN3a, and ODN3b, increased upon their hybridization with their complementary strands. These results indicate that the dynamic conformation change of the long-chain linker upon hybridization changes the environment around the anthracene residue so that their fluorescence increases.

We also examined the effect of the presence of mismatch base pairs on the fluorescence of ODN3a. Interestingly, when ODN3a was hybridized to the target strand ODN8 with an A•C mismatch at the nearby site of the long-chain-linked units, the fluorescence decreased significantly. This observation suggests that the fluorescence of the anthracene moiety of ODN3a is very sensitive to the loss of base pairs at a specific site.

## Experimental Part

1. General. TLC: Merck silica gel $60\left(F_{254}\right)$ plates. Column chromatography (CC): silica gel C-200 (Wako Co. Ltd.); for rapid separations a minipump for a goldfish bowl was used to attain sufficient pressure. UV Spectra: Biospec-mini spectrophotometer. Circular dichroism (CD) spectra: J-725 spectrometer, 0.5 cm cell. ${ }^{1} \mathrm{H}-,{ }^{13} \mathrm{C}$-, and ${ }^{31} \mathrm{P}-\mathrm{NMR}$ Spectra: at 500,126 , and 202 MHz , resp.; chemical shifts $\delta$ in ppm rel. to $\mathrm{SiMe}_{4}(=0 \mathrm{ppm})$ or $\left(\mathrm{D}_{6}\right) \mathrm{DMSO}(=2.49 \mathrm{ppm})$ for ${ }^{1} \mathrm{H}$, and rel. to $\mathrm{CDCl}_{3}$ $(=77.0 \mathrm{ppm})$ or $\left(\mathrm{D}_{6}\right)$ DMSO $(=39.7 \mathrm{ppm})$ for ${ }^{13} \mathrm{C}$. ESI-MS: Mariner ${ }^{\mathrm{TM}}$; in $\mathrm{m} / z$. Cyclic voltammetry: $A L S$ electrochemical analyzer, model 600A. Elemental analyses were performed by the Microanalytical Laboratory, Tokyo Institute of Technology at Nagatsuta.

5'-O-[Bis(4-methoxyphenyl)phenylmethyl]-3'-O-(prop-2-en-1-yl)thymidine (2). To a soln. of 5'-O-bis[(4-methoxyphenyl)phenylmethyl]thymidine $(22 \mathrm{~g}, 41 \mathrm{mmol})$ in THF $(200 \mathrm{ml}), \mathrm{NaH}(3.3 \mathrm{~g}, 89 \mathrm{mmol})$ and 3-bromoprop-1-ene $(3.5 \mathrm{ml}, 41 \mathrm{mmol})$ were added. The soln. was stirred at r.t. for 90 min , then the reaction was quenched by addition of $\mathrm{MeOH}(10 \mathrm{ml})$. The soln. was diluted with $\mathrm{AcOEt}(200 \mathrm{ml})$, washed twice with brine $(100 \mathrm{ml})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated and the residue subjected to CC (silica gel, hexane/ $\left.\mathrm{CHCl}_{3} 1: 1\right): \mathbf{2}(17 \mathrm{~g}, 70 \%) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{5}\right): 1.46(s, \mathrm{Me}-\mathrm{C}(5)) ; 2.17-$ $2.51\left(\mathrm{~m}, 2 \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right) ; 3.30-3.51\left(\mathrm{~m}, 2 \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right) ; 3.80(\mathrm{~s}, 2 \mathrm{MeO}) ; 3.90-4.02\left(\mathrm{~m}, \mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{O}\right)$; 4.13-4.15 ( $\left.m, \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)\right)$; 4.25-4.27 ( $m, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)$ ); 5.18-5.27 $\left(m, \mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{O}\right)$; 5.82-5.90 ( $m$, $\left.\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{O}\right) ; 6.34-6.37\left(t, J=2.2,1 \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 6.82-7.41\left(m, 13 \mathrm{H}\right.$ of $\left.(\mathrm{MeO})_{2} \operatorname{Tr}\right) ; 7.62(s$, $\mathrm{H}-\mathrm{C}(6)) ; 8.23(s, \mathrm{NH}(3)) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 11.97 ; 38.17 ; 55.41 ; 63.77 ; 70.41 ; 79.03 ; 84.31$; 84.99; 87.05; 111.27; 113.41; 113.42; 117.67; 127.31; 128.15; 128.26; 130.22; 134.20; 135.50; 135.55; 135.77; 144.47; 150.24; 158.88; 163.62. ESI-MS: $604.2575\left(\mathrm{C}_{34} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{NaO}_{7}^{+}\right.$; calc. 607.2420).

5'-O-[Bis(4-methoxyphenyl)phenylmethyl]-3'-(2-oxoethyl)thymidine (3). To a soln. of $2(17 \mathrm{~g}$, $28 \mathrm{mmol})$ in acetone $/ \mathrm{H}_{2} \mathrm{O} 6: 1(230 \mathrm{ml}), \mathrm{OsO}_{4}(7.1 \mathrm{ml}, 570 \mu \mathrm{~mol})$ and 4-methylmorpholine 4-oxide $\left(13 \mathrm{ml} ; 50 \%\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}, 63 \mathrm{mmol}\right)$ were added. The soln. was stirred in the dark at r.t. for 3 h . The solid was removed by filtration, and the filtrate was diluted with $\mathrm{AcOEt}(250 \mathrm{ml})$. The org. layer was washed once with sat. aq. $\mathrm{NaHCO}_{3}$ soln. $(100 \mathrm{ml})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. The residue was dissolved in 1,4dioxane $/ \mathrm{H}_{2} \mathrm{O} 3: 1(280 \mathrm{ml})$, and to this soln. was added $\mathrm{NaIO}_{4}(7.2 \mathrm{~g}, 34 \mathrm{mmol})$. The soln. was stirred in the dark at r.t. for 13 h . The soln. was diluted with $\mathrm{AcOEt}(300 \mathrm{ml})$, washed once with sat. aq. $\mathrm{NaHCO}_{3}$
soln., dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated and the residue subjected to CC (silica gel, $\left.\mathrm{CHCl}_{3}\right): \mathbf{3}(13 \mathrm{~g}$, $80 \%) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.55(\mathrm{~s}, \mathrm{Me}-\mathrm{C}(5)) ; 2.11-2.16\left(m, 1 \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right) ; 2.40-2.49(\mathrm{~m}$, $\left.1 \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right) ; 3.31-3.56\left(m, 2 \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right) ; 3.80(s, 2 \mathrm{MeO}) ; 4.01-4.11\left(m, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{O}\right) ; 4.16-4.23$ $\left(m, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right), \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)\right) ; 6.35-6.37\left(m, \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 6.83-7.40\left(m, 13 \mathrm{H}\right.$ of $\left.(\mathrm{MeO})_{2} T r\right) ; 7.58(m$, $\mathrm{H}-\mathrm{C}(6)) ; 10.01-10.10\left(m, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{O}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 12.01 ; 37.78 ; 55.40 ; 63.69 ; 74.67$; 81.01; 84.05; 84.79; $87.18 ; 111.50 ; 113.43 ; 113.44 ; 127.32 ; 127.37 ; 128.15 ; 128.17 ; 128.20 ; 128.24 ; 130.17$; 130.21; 135.37; 135.43; 135.54; 144.34; 150.38; 158.86; 158.91; 163.76; 199.45. ESI-MS: 609.2295 $\left(\mathrm{C}_{33} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{NaO}_{8}^{+}\right.$; calc. 609.2213).
$3^{\prime}-\mathrm{O}-[($ tert-Butyl)dimethylsilyl]-5'-O-(prop-2-en-1-yl)thymidine (4). As described for 2, with 3'-O-[(tert-butyl)dimethylsilyl]thymidine $(9.8 \mathrm{~g}, 27 \mathrm{mmol})$, THF $(140 \mathrm{ml}), \mathrm{NaH}(1.4 \mathrm{~g}, 60 \mathrm{mmol})$, and 3-bromoprop-1-ene $(2.3 \mathrm{ml}, 27 \mathrm{mmol})$ for 4 h . Workup with $\mathrm{MeOH}(10 \mathrm{ml})$, $\mathrm{AcOEt}(150 \mathrm{ml})$, and brine $(100 \mathrm{ml})$ and CC (silica gel, hexane $/ \mathrm{CHCl}_{3} 3: 2$ ), gave $4(7.3 \mathrm{~g}, 68 \%) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 0.08$ $\left(s, \mathrm{Me}_{2} \mathrm{Si}\right) ; 0.89\left(s,{ }^{\mathrm{t}} \mathrm{BuSi}\right) ; 1.90(s, \mathrm{Me}-\mathrm{C}(5)) ; 2.04-2.08\left(m, 1 \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right) ; 2.16-2.20\left(m, 1 \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right) ; 3.51$ $\left(d d, J=2.2,10.7,1 \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right), 3.66\left(d d, J=2.2,10.7,1 \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right) ; 3.98-4.00\left(m, \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)\right) ; 4.05-4.07(m$, $\left.\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{O}\right) ; 4.44-4.47\left(\mathrm{~m}, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 5.14-5.24\left(m, \mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{O}\right) ; 5.89-5.96$ ( m , $\left.\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{O}\right) ; 6.26\left(t, J=6.3, \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 7.66(s, \mathrm{H}-\mathrm{C}(6)) ; 8.07(s, \mathrm{NH}(3)) .{ }^{13} \mathrm{C}-\mathrm{NMR}(126 \mathrm{MHz}$, $\mathrm{CDCl}_{3}$ ): $-4.84 ;-4.65 ; 12.60 ; 18.00 ; 25.77 ; 41.43 ; 69.49 ; 71.97 ; 72.40 ; 85.06 ; 86.45 ; 110.75 ; 117.54$; 134.07; 136.05; 150.66; 164.34. ESI-MS: $397.2357\left(\mathrm{C}_{19} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{16} \mathrm{Si}^{+}\right.$; calc. 397.2159).

3'-O-[(tert-Butyl)dimethylsilyl]-5'-O-(2-oxoethyl)thymidine (5). As described for 3, with $4(7.3 \mathrm{~g}$, $19 \mathrm{mmol})$, acetone $/ \mathrm{H}_{2} \mathrm{O} 6: 1(190 \mathrm{ml}), \mathrm{OsO}_{4}(3.8 \mathrm{~g}, 370 \mu \mathrm{~mol})$, and 4-methylmorpholine-4-oxide ( 8.5 ml ; $50 \%$ in $\left.\mathrm{H}_{2} \mathrm{O}, 41 \mathrm{mmol}\right)$ for 19 h . Then workup with $\mathrm{AcOEt}(200 \mathrm{ml})$ and sat. aq. $\mathrm{NaHCO}_{3}$ soln. $(150 \mathrm{ml})$, followed by treatment of the residue in 1,4-dioxane $/ \mathrm{H}_{2} \mathrm{O} 3: 1(190 \mathrm{ml})$, with $\mathrm{NaIO}_{4}(4.7 \mathrm{~g}, 22 \mathrm{mmol})$ for 20 h . Workup with $\operatorname{AcOEt}(200 \mathrm{ml})$ and sat. aq. $\mathrm{NaHCO}_{3}$ soln. and CC (silica gel, hexane/ $\mathrm{CHCl}_{3} 2: 3$ gave $5(6.4 \mathrm{~g}, 86 \%) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 0.01\left(s, \mathrm{Me}_{2} \mathrm{Si}\right) ; 0.80-0.81\left(m,{ }^{t} \mathrm{BuSi}\right) ; 1.81(d, J=0.7$, $\mathrm{Me}-\mathrm{C}(5))$; 2.12-2.27 ( $\left.m, 2 \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right)$; 3.45-3.89 ( $m, 2 \mathrm{H}-\mathrm{C}\left(5^{\prime}\right), \mathrm{CH}_{2} \mathrm{CH}=\mathrm{O}$ ); 3.97-4.02 ( m , $\left.\mathrm{H}-\mathrm{C}\left(4^{\prime}\right)\right) ; 4.42-4.53\left(m, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 6.29-6.37\left(m, \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 7.50-7.58(\mathrm{~m}, \mathrm{H}-\mathrm{C}(6)) ; 8.12(s$, $\mathrm{NH}(3)) ; 9.72\left(s, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{O}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):-4.78 ;-4.58 ; 12.62 ; 18.05 ; 25.81 ; 41.08$; $71.15 ; 72.23 ; 85.20 ; 86.12 ; 111.12 ; 136.08 ; 150.57 ; 164.08 ; 198.02$. ESI-MS: $399.1714\left(\mathrm{C}_{18} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Si}^{+} ;\right.$calc. 399.1951).

3'-O-[(tert-Butyl)dimethylsilyl]-5'-O-[13-(4-methoxyphenyl)-13,13-diphenyl-6,9-dioxa-3,12-diazatri-dec-1-yllthymidine (7). To the soln. of $\mathbf{6}(200 \mathrm{mg}, 502 \mu \mathrm{~mol})$ in $\mathrm{CHCl}_{3}(5 \mathrm{ml})$ was added $5(211 \mathrm{mg}$, $502 \mu \mathrm{~mol})$. To this soln. was added $\mathrm{NaBH}(\mathrm{OAc})_{3}(213 \mathrm{mg}, 1.0 \mathrm{mmol})$, and the resulting mixture was stirred at r.t. for 40 min . The soln. was diluted with $\mathrm{AcOEt}(10 \mathrm{ml})$ and washed once with sat. aq. $\mathrm{NaHCO}_{3}$ soln. $(10 \mathrm{ml})$. The org. layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated and the residue subjected to $\mathrm{CC}\left(\mathrm{NH}\right.$-silica gel, hexane/ $\left.\mathrm{CHCl}_{3} 2: 3\right): 7(338 \mathrm{mg}, 84 \%) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 0.10\left(s, \mathrm{Me}_{2} \mathrm{Si}\right)$; $0.91\left(s,{ }^{\iota} \mathrm{BuSi}\right) ; 1.92(s, \mathrm{Me}-\mathrm{C}(5)) ; 2.07-2.11\left(m, 1 \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right) ; 2.23-2.27\left(m, 1 \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right) ; 2.36(t, J=5.6$, $\left.2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right) ; 2.79\left(t, J=5.3,2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right) ; 2.84\left(t, J=6.1,2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right) ; 3.50-3.65\left(m, 1 \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right.$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{NH}\right) ; 3.72\left(d d, J=2.9,10.8,1 \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right) ; 3.79(s, \mathrm{MeO})$, $3.98-4.00\left(m, \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)\right) ; 4.42-4.44\left(m, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 6.34\left(t, J=2.8, \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 6.80-6.83(m, 2$ arom. H$)$; $7.15-7.52(m, 12 \mathrm{H}$ of $(\mathrm{MeO}) \operatorname{Tr}) ; 7.53(s, \mathrm{H}-\mathrm{C}(6)) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):-4.93 ;-4.76 ; 12.61$; $17.84 ; 25.65 ; 41.06 ; 42.95 ; 48.84 ; 49.10 ; 55.01 ; 69.94 ; 70.02 ; 70.17 ; 70.31 ; 70.40 ; 71.06 ; 71.16 ; 72.09 ; 84.84$; 86.18; 110.62; 112.97; 126.03; 127.64; 128.48; 129.72; 135.56; 138.15; 146.28; 150.61; 157.71; 164.23. ESIMS: $803.2904\left(\mathrm{C}_{44} \mathrm{H}_{63} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{Si}^{+}\right.$; calc. 803.4415).

5'-O-\{2-\{\{2-[2-(2-Aminoethoxy)ethoxy]ethyl\}amino\}ethyl\}-3'-O-[(tert-butyl)dimethylsilyl]thymidine (8). A soln. of $7(590 \mathrm{mg}, 735 \mu \mathrm{~mol})$ in $3 \% \mathrm{CCl}_{3} \mathrm{COOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{ml})$ was stirred at r.t. for 10 min . The soln. was diluted with $\mathrm{CHCl}_{3}(10 \mathrm{ml})$, washed with sat. aq. $\mathrm{NaHCO}_{3}$ soln. $(4 \times 10 \mathrm{ml})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated and the residue subjected to $\mathrm{CC}\left(\mathrm{NH}\right.$-silica gel, $\mathrm{CHCl}_{3} / \mathrm{MeOH} / \mathrm{Et}_{3} \mathrm{~N} 97: 3: 1$ ): $\mathbf{8}$ ( $350 \mathrm{mg}, 88 \%$ ). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ ): $0.08\left(s, \mathrm{Me}_{2} \mathrm{Si}\right) ; 0.89\left(s,{ }^{t} \mathrm{BuSi}\right), 1.93(s, \mathrm{Me}-\mathrm{C}(5)), 2.07-$ $2.18\left(m, 1 \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right) ; 2.21-2.29\left(m, 1 \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right) ; 2.80-2.88\left(m, 6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right) ; 3.38\left(\mathrm{br} ., \mathrm{NH}_{2}\right) ; 3.49-3.74$ $\left(m, 12 \mathrm{H}, 2 \mathrm{H}-\mathrm{C}\left(5^{\prime}\right), \mathrm{CH}_{2} \mathrm{O}\right) ; 3.98-4.00\left(m, \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)\right) ; 4.39-4.42\left(m, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 6.27-6.30(t, J=6.7$, $\left.\mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 7.52(s, \mathrm{H}-\mathrm{C}(6)) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):-4.74 ;-4.56 ; 12.86 ; 18.06 ; 25.83 ; 41.36$; $41.73 ; 49.25 ; 49.48 ; 70.27 ; 70.43 ; 70.60 ; 70.65 ; 71.39 ; 72.31 ; 73.34 ; 85.25 ; 86.45 ; 110.78 ; 135.85 ; 150.56$; 160.11. ESI-MS: $531.1849\left(\mathrm{C}_{24} \mathrm{H}_{47} \mathrm{~N}_{4} \mathrm{O}_{7} \mathrm{Si}^{+}\right.$; calc. 531.3214).

5'-O-[Bis(4-methoxyphenyl)phenylmethyl]-3'-O-dephosphinicothymidylyl(6,9-dioxa-3,12-diazate-tradecane-1,14-diyl)-(3' $\rightarrow 5^{\prime}$ )-3'-O-[(tert-butyl)dimethylsilyl]thymidine 9. As described for 7, with $\mathbf{8}$ $(350 \mathrm{mg}, 677 \mu \mathrm{~mol})$ in $\mathrm{CHCl}_{3}(17 \mathrm{ml}), \mathbf{3}(397 \mathrm{mg}, 677 \mu \mathrm{~mol})$ in $\mathrm{CHCl}_{3}(17 \mathrm{ml})$, and $\mathrm{NaBH}(\mathrm{OAc})_{3}$ $(387 \mathrm{mg}, 1.4 \mathrm{mmol})$ for 15 min . Workup with $\operatorname{AcOEt}(50 \mathrm{ml})$ and sat. aq. $\mathrm{NaHCO}_{3}$ soln. $(2 \times 30 \mathrm{ml})$ and CC (silica gel, $\mathrm{CHCl}_{3} / \mathrm{MeOH}(96: 4)$ gave $9(403 \mathrm{mg}, 54 \%) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 0.08\left(s, \mathrm{Me}_{2} \mathrm{Si}\right)$; $0.89\left(s,{ }^{t} \mathrm{BuSi}\right) ; 1.45(s, 1 \mathrm{Me}-\mathrm{C}(5)) ; 1.95(s, 1 \mathrm{Me}-\mathrm{C}(5)) ; 2.07-2.49\left(m, 4 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right) ; 2.81-2.85$ (br., $\left.4 \mathrm{CH}_{2} \mathrm{~N}\right) ; 3.32\left(d d, J=3.5,10.5,1 \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right) ; 3.51\left(d d, J=2.7,10.5,1 \mathrm{H}-\mathrm{C}\left(5^{\prime \prime}\right)\right) ; 3.54-3.68$ ( $m$, $\left.\left.2 \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right), 6 \mathrm{CH}_{2} \mathrm{O}\right) ; 3.79(s, 2 \mathrm{MeO}) ; 3.98-4.40\left(m, 2 \mathrm{H}-\mathrm{C}\left(3^{\prime}\right), 2 \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)\right) ; 6.28(t, J=4.5$, $\left.1 \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 6.37\left(t, J=2.9,1 \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 6.83(\mathrm{~m}, 2$ arom. H); 7.18-7.40( $\mathrm{m}, 11$ arom. H); $7.50(s$, $1 \mathrm{H}-\mathrm{C}(6)) ; 7.59(s, 1 \mathrm{H}-\mathrm{C}(6)) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):-4.74 ;-4.56 ; 11.91 ; 12.85 ; 18.05 ; 25.83$; $37.94 ; 41.35 ; 49.12 ; 49.17 ; 49.21 ; 49.35 ; 55.36 ; 64.03 ; 68.85 ; 70.30 ; 70.36 ; 70.40 ; 70.53 ; 70.64 ; 71.21 ; 72.33$; $80.44 ; 84.14 ; 84.85 ; 85.42 ; 86.48 ; 87.02 ; 110.71 ; 111.30 ; 113.38 ; 127.26 ; 128.10 ; 128.24 ; 130.18 ; 135.46$; $135.50 ; 135.69 ; 135.93 ; 144.43$; 150.56; 158.83; 164.01; 164.14. ESI-MS: 1101.6314 $\left([M+\mathrm{H}]^{+}\right.$, $\mathrm{C}_{57} \mathrm{H}_{81} \mathrm{~N}_{6} \mathrm{O}_{14} \mathrm{Si}^{+}$; calc. 1101.5580).

5'-O-[Bis(4-methoxyphenyl)phenylmethyl]-3'-O-dephosphinicothymidylyl(6,9-dioxa-3,12-diazate-tradecane-1,14-diyl)-( $\left.3^{\prime} \rightarrow 5^{\prime}\right)$-thymidine (10). To a soln. of $9(837 \mathrm{mg}, 760 \mu \mathrm{~mol})$ in THF ( 7.6 ml ) was added $1 \mathrm{~m} \mathrm{Bu}_{4} \mathrm{NF}$ in THF $(836 \mu \mathrm{l})$, and the soln. was stirred at r.t. for 2 h . The soln. was diluted with AcOEt $(10 \mathrm{ml})$, washed once with brine $(10 \mathrm{ml})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated and the residue subjected to $\mathrm{CC}\left(\mathrm{NH}\right.$-silica gel, $\left.\mathrm{CHCl}_{3} / \mathrm{MeOH} 99: 1\right)$ : $\mathbf{1 0}(680 \mathrm{mg}, 91 \%) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ : $1.44\left(s, 1 \mathrm{Me}-\mathrm{C}(5) ; 1.90\left(s, 1 \mathrm{Me}-\mathrm{C}(5) ; 2.15-2.51\left(m, 4 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right) ; 2.79-2.85\left(m, 8 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right)\right.\right.$; 3.29-3.75 ( $\left.m, 16 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(5^{\prime}\right), \mathrm{CH}_{2} \mathrm{O}\right) ; 3.78(s, 2 \mathrm{MeO}) ; 4.01$ (br., $1 \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)$ ); 4.15 (br., $1 \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)$ ); 4.18 (br., $\left.1 \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 4.50$ (br., $\left.1 \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right)$; $6.32-6.37$ ( $m, 2 \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)$ ); 6.79-6.83 ( $m, 4$ arom. H ); $7.18-7.41\left(m, 9\right.$ arom. H); 7.57, $7.60(2 s, 2 \mathrm{H}-\mathrm{C}(6)) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 11.81 ; 12.72 ; 37.77$; $40.80 ; 48.58 ; 48.70 ; 48.88 ; 55.23 ; 63.93 ; 68.53 ; 70.01 ; 70.18 ; 70.30 ; 70.36 ; 70.66 ; 80.31 ; 83.94 ; 84.64 ; 84.92$; $85.80 ; 86.87 ; 110.56 ; 111.22 ; 113.25 ; 127.11 ; 127.97 ; 128.10 ; 130.06 ; 135.33 ; 135.37 ; 135.56 ; 135.99 ; 144.30$; 150.76; 150.80; 158.66; 164.44; 164.49. ESI-MS: 987.5160 ([M+H] ${ }^{+}, \mathrm{C}_{51} \mathrm{H}_{67} \mathrm{~N}_{6} \mathrm{O}_{14}^{+}$; calc. 987.4715).

5'-O-[Bis(4-methoxyphenyl)phenylmethyl]-3'-O-dephosphinicothymidylyl[3,12-bis(2,2,2-trifluoro-acetyl)-6,9-dioxa-3,12-diazatetradecane-1,14-diyl]-( $\left.3^{\prime} \rightarrow 5^{\prime}\right)$-thymidine (11). To a soln. of $\mathbf{1 0}(510 \mathrm{mg}$, $507 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml})$ were added ${ }^{\mathrm{i}} \mathrm{Pr}_{2} \mathrm{EtN}(580 \mu \mathrm{l}, 3.4 \mathrm{mmol})$ and $\left(\mathrm{CF}_{3} \mathrm{CO}\right)_{2} \mathrm{O}(233 \mu \mathrm{l}, 1.7 \mathrm{mmol})$, and the soln. was stirred at r.t. for 10 min . The soln. was diluted with $\operatorname{AcOEt}(10 \mathrm{ml})$, washed once with brine $(10 \mathrm{ml})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated and the residue subjected to CC (silica gel, $\mathrm{CHCl}_{3} /$ MeOH $98: 2$ ): $\mathbf{1 1}(507 \mathrm{mg}, 83 \%) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.41-1.48(m, \mathrm{Me}-\mathrm{C}(5)) ; 1.90-1.92(m$, $\mathrm{Me}-\mathrm{C}(5)) ; 2.12-2.47\left(m, 4 \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right) ; 3.29-3.76\left(m, 4 \mathrm{H}-\mathrm{C}\left(5^{\prime}\right), 10 \mathrm{CH}_{2}\right.$ of $3^{\prime} \rightarrow 5^{\prime}$ linker); 3.79 ( $s$, $2 \mathrm{MeO}) ; 4.06-4.45\left(m, 2 \mathrm{H}-\mathrm{C}\left(3^{\prime}\right), 2 \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)\right) ; 6.29-6.36\left(m, 2 \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 6.84$ ( $m, 2$ arom. H); 7.21 $7.40\left(m, 11\right.$ arom. H); $7.46(s, 1 \mathrm{H}-\mathrm{C}(6)) ; 7.59(s, 1 \mathrm{H}-\mathrm{C}(6)) ; 9.99($ br., $2 \mathrm{NH}(3)) .{ }^{13} \mathrm{C}-\mathrm{NMR}(126 \mathrm{MHz}$, $\mathrm{CDCl}_{3}$ ): $0.13 ; 11.89 ; 12.97 ; 12.76 ; 37.89 ; 37.86 ; 40.20 ; 40.25 ; 47.56 ; 47.92 ; 48.25 ; 48.41 ; 48.70 ; 48.80 ; 55.41$; $63.96 ; 64.20 ; 66.56 ; 68.27 ; 68.52 ; 68.46 ; 70.02 ; 70.14 ; 70.31 ; 70.52 ; 70.70 ; 70.74 ; 70.82 ; 70.88 ; 71.26 ; 71.62$; $81.05 ; 84.01 ; 84.13 ; 84.76 ; 85.34 ; 85.36 ; 85.41 ; 85.48 ; 85.74 ; 87.24 ; 87.22 ; 111.02 ; 111.10 ; 111.75 ; 111.79$; $113.45 ; 115.40 ; 117.69 ; 127.39 ; 128.18 ; 128.24 ; 130.20 ; 135.34 ; 135.49 ; 135.58 ; 135.99 ; 136.11 ; 144.33$; $150.57 ; 150.79 ; 158.93 ; 163.85 ; 163.90 ; 163.94$. ESI-MS: $1201.4032\left([M+\mathrm{Na}]^{+}, \mathrm{C}_{55} \mathrm{H}_{65} \mathrm{~F}_{6} \mathrm{~N}_{6} \mathrm{NaO}_{16}^{+}\right.$; calc. 1201.4180).

5'-O-[Bis(4-methoxyphenyl)phenylmethyl]-3'-O-dephosphinicothymidylyl[3,12-bis(2,2,2-trifluoro-acetyl)-6,9-dioxa-3,12-diazatetradecane-1,14-diyl]-( $3^{\prime} \rightarrow 5^{\prime}$ )-thymidine 3'-(2-Cyanoethyl $\mathrm{N}, \mathrm{N}$-Diisopropylphosphoramidite) (12). To a soln. of $\mathbf{1 1}(193 \mathrm{mg}, 164 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(660 \mu \mathrm{l})$ were added 2-cyanoethyl $N, N, N^{\prime}, N^{\prime}$-tetraisopropylphosphorodiamidite ( $62 \mu \mathrm{l}, 196 \mu \mathrm{~mol}$ ) and diisopropylammonium $1 H$-tetrazolide $(11 \mathrm{mg}, 66 \mu \mathrm{~mol})$. The mixture was stirred at r.t. for 6 h . The soln. was diluted with AcOEt $(10 \mathrm{ml})$, and washed once with sat. aq. $\mathrm{NaHCO}_{3}$ soln. $(10 \mathrm{ml})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated and the residue purified by gel-filtration HPLC (AcOEt): $12(171 \mathrm{mg}, 76 \%) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.18-1.20(\mathrm{~m}$, $\left.2 \mathrm{Me}_{2} \mathrm{CH}\right) ; 1.44,1.48(2 s, 1 \mathrm{Me}-\mathrm{C}(5)) ; 1.91,1.94(2 s, 1 \mathrm{Me}-\mathrm{C}(5)) ; 2.14-2.45\left(m, 4 \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right) ; 2.64(t$, $\left.J=6.1, \mathrm{POCH}_{2} \mathrm{CH}_{2} \mathrm{CN}\right) ; 3.27-3.78\left(m, 4 \mathrm{H}-\mathrm{C}\left(5^{\prime}\right), 2 \mathrm{Me}_{2} \mathrm{CH}, \mathrm{POCH}_{2} \mathrm{CH}_{2} \mathrm{CN}, 10 \mathrm{CH}_{2}\right.$ of $3^{\prime} \rightarrow 5^{\prime}$ linker $)$; $3.80(s, 2 \mathrm{MeO}) ; 4.09-4.56\left(m, 2 \mathrm{H}-\mathrm{C}\left(3^{\prime}\right), 2 \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)\right) ; 6.24-6.36\left(m, 2 \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 6.83-6.85(m, 4$ arom. H); 7.18-7.37 (m, 9 H of $\left.(\mathrm{MeO})_{2} \operatorname{Tr}\right) ; 7.38-7.47(m, 2 \mathrm{H}-\mathrm{C}(6)) ; 7.58($ br., $2 \mathrm{NH}(3)) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ (126 MHz, $\mathrm{CDCl}_{3}$ ): 11.89; 11.95; 12.66; 19.34; 20.48; 20.52; 21.57; 24.50; 24.55; 24.59; 24.66; 24.69; 24.71;
$24.74 ; 37.70 ; 37.85 ; 39.42 ; 43.34 ; 43.44 ; 46.76 ; 47.44 ; 47.67 ; 47.95 ; 48.05 ; 48.18 ; 48.23 ; 48.50 ; 48.70 ; 55.36$; $57.92 ; 58.02 ; 58.17 ; 63.84 ; 64.10 ; 66.52 ; 68.22 ; 68.30 ; 68.41 ; 69.88 ; 69.85 ; 70.17 ; 70.44 ; 70.59 ; 70.69 ; 70.78$; $71.14 ; 71.17 ; 80.87 ; 83.94 ; 84.06 ; 84.57 ; 84.72 ; 84.76 ; 84.82 ; 87.14 ; 111.05 ; 111.12 ; 111.50 ; 111.54 ; 113.40$; $115.38 ; 117.67 ; 117.82 ; 117.89 ; 127.32 ; 128.12 ; 128.21 ; 130.16 ; 135.35 ; 135.48 ; 135.54 ; 136.11 ; 144.32$; $150.51 ; 150.55 ; 150.58 ; 150.61 ; 158.87 ; 163.93 ; 164.01 .{ }^{31} \mathrm{P}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 203 \mathrm{MHz}\right): 149.33 ; 149.37$. ESIMS: $1401.5037\left([M+H]^{+}, \mathrm{C}_{61} \mathrm{H}_{78} \mathrm{~F}_{6} \mathrm{~N}_{7} \mathrm{NaOP}_{16}^{+}\right.$; calc. 1401.5439).

5'-O-[3-(Anthracen-9-ylmethyl)-13-(4-methoxyphenyl)-13,13-diphenyl-6,9-dioxa-3,12-diazatridec-1$y l]-3^{\prime}-\mathrm{O}$-[(tert-butyl)dimethylsilyl]thymidine (13). To a soln. of $7(4.1 \mathrm{~g}, 5.0 \mathrm{mmol})$ in $N, N$-dimethylformamide $(50 \mathrm{ml})$ were added 9 -(chloromethyl)anthracene $(1.1 \mathrm{~g}, 5.0 \mathrm{mmol}), \mathrm{Na}_{2} \mathrm{CO}_{3}(11 \mathrm{~g}$, $101 \mathrm{mmol})$, and KI $(167 \mathrm{mg}, 1.0 \mathrm{mmol})$. The mixture was stirred at r.t. for 2 h . The soln. was diluted with $\operatorname{AcOEt}(200 \mathrm{ml})$, washed with brine $(3 \times 200 \mathrm{ml})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated and the residue subjected to $\mathrm{CC}\left(\mathrm{NH}\right.$-silica gel, hexane/ $\left.\mathrm{CHCl}_{3} 1: 1\right): 13(3.2 \mathrm{~g}, 64 \%) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 0.04$, 0.07 ( $2 s, \mathrm{Me}_{2} \mathrm{Si}$ ); $0.87\left(\mathrm{~s},{ }^{t} \mathrm{BuSi}\right) ; 1.53(\mathrm{~s}, \mathrm{Me}-\mathrm{C}(5)) ; 1.67-1.80\left(m, 1 \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right) ; 2.02-2.08$ ( $m$, $\left.1 \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right) ; 2.38-2.40\left(m, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right) ; 2.81-2.95\left(m, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right) ; 3.35-3.67\left(m, 15 \mathrm{H}, 2 \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right.$, $\left.5 \mathrm{CH}_{2} \mathrm{O}, \mathrm{MeO}\right) ; 3.84\left(s, \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)\right) ; 4.20\left(s, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 4.63\left(s, \mathrm{NCH}_{2}-\right.$ anth $) ; 6.19\left(t, J=6.3, \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right)$; $6.76-6.80(m, 2$ arom. H); $7.18-7.57(m, 17 \mathrm{H}, \mathrm{H}-\mathrm{C}(6)$, arom. H) ; $8.01(d, J=6.1,2$ arom. H); $8.40(s, 1$ arom. H) ; $8.53\left(d, J=8.8,2\right.$ arom. H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):-4.75 ;-4.59 ; 12.49 ; 18.05 ; 25.83$; $41.11 ; 43.16 ; 52.18 ; 53.54 ; 54.28 ; 55.26 ; 70.24 ; 70.30 ; 70.47 ; 70.57 ; 71.50 ; 72.63 ; 85.17 ; 86.54 ; 110.49$; $113.17 ; 125.00 ; 125.10 ; 125.79 ; 126.26 ; 127.75 ; 127.86 ; 128.71 ; 129.18 ; 129.95 ; 130.11 ; 131.46 ; 131.54$; 135.77; 138.37; 146.49; 157.93. ESI-MS: $993.3506\left([M+\mathrm{H}]^{+}, \mathrm{C}_{59} \mathrm{H}_{73} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{Si}^{+}\right.$; calc. 993.5198).

5'-O-\{2-\{\{2-[2-(2-Aminoethoxy)ethoxy]ethyl\}(anthracen-9-ylmethyl) amino\}ethyl\}-3'-O-[(tert-butyl)dimethylsilyljthymidine (14). As described for $\mathbf{8}$, with $\mathbf{1 3}(1.0 \mathrm{~g}, 1.0 \mathrm{mmol})$ and $3 \% \mathrm{CCl}_{3} \mathrm{COOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(34 \mathrm{ml})$ for 15 min . Workup with $\mathrm{CHCl}_{3}(30 \mathrm{ml})$ and sat. aq. $\mathrm{NaHCO}_{3}$ soln. $(4 \times 50 \mathrm{ml})$ and $\mathrm{CC}(\mathrm{NH}-$ silica gel, $\mathrm{CHCl}_{3}$ ) gave $14(678 \mathrm{mg}, 93 \%) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):-0.01$ to $0.01\left(2 \mathrm{~s}, \mathrm{Me}_{2} \mathrm{Si}\right) ; 0.83$ $\left(s,{ }^{t} \mathrm{BuSi}\right) ; 1.53(s, \mathrm{Me}-\mathrm{C}(5)) ; 1.68-1.79\left(m, 1 \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right) ; 1.98-2.02\left(m, 1 \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right) ; 2.78-2.90(m, 6 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{~N}\right) ; 3.34-3.63\left(m, 12 \mathrm{H}, 2 \mathrm{H}-\mathrm{C}\left(5^{\prime}\right), \mathrm{CH}_{2} \mathrm{O}\right) ; 3.81-3.82\left(m, \mathrm{H}-\mathrm{C}\left(4^{\prime}\right), J=2.7 \mathrm{~Hz}\right) ; 4.08\left(\mathrm{br} ., \mathrm{NH}_{2}\right)$; 4.19-4.21 ( $m, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)$ ); $4.61\left(s, \mathrm{NCH}_{2}\right.$-anth $) ; 6.18\left(t, J=6.3, \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 7.21(s, \mathrm{H}-\mathrm{C}(6)) ; 7.40-7.53$ $\left(m, 4\right.$ arom. H); $7.98\left(m, 2\right.$ arom. H); $8.38\left(s, 1\right.$ arom. H); $8.41-8.49\left(m, 2\right.$ arom. H). ${ }^{13} \mathrm{C}-\mathrm{NMR}(126 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right):-4.76 ;-4.59 ; 12.53 ; 18.05 ; 25.82 ; 41.12 ; 41.79 ; 52.20 ; 53.67 ; 54.25 ; 70.21 ; 70.36 ; 70.41 ; 70.46$; $70.60 ; 72.59 ; 73.51 ; 85.19 ; 86.52 ; 110.50 ; 124.99 ; 125.08 ; 125.79 ; 127.77 ; 129.19 ; 130.07 ; 131.45 ; 131.53$; 135.76; 150.33; 163.81. ESI-MS: $721.2548\left([M+\mathrm{H}]^{+}, \mathrm{C}_{39} \mathrm{H}_{57} \mathrm{~N}_{4} \mathrm{O}_{7} \mathrm{Si}^{+}\right.$; calc. 721.3997).

5'-O-[Bis(4-methoxyphenyl)phenylmethyl]-3'-O-dephosphinicothymidylyl[12-(anthracen-9-ylmeth-yl)-6,9-dioxa-3,12-diazatetradecane-1,14-diyl]-( $\left.3^{\prime} \rightarrow 5^{\prime}\right)$-3'-O-[(tert)-butyl)dimethylsilyl]thymidine (15). As described for $\mathbf{7}$, with $14(579 \mathrm{mg}, 804 \mu \mathrm{~mol})$ and $\mathbf{3}(397 \mathrm{mg}, 677 \mu \mathrm{~mol})$ in $\mathrm{CHCl}_{3}(8 \mathrm{ml})$ and $\mathrm{NaBH}(\mathrm{OAc})_{3}(431 \mathrm{mg}, 1.6 \mathrm{mmol})$ for 5 min . Workup with $\mathrm{AcOEt}(20 \mathrm{ml})$ and sat. aq. $\mathrm{NaHCO}_{3}$ soln. $(2 \times 20 \mathrm{ml})$ and CC (silica gel, $\left.\mathrm{CHCl}_{3} / \mathrm{MeOH} 98: 2\right)$ gave 15 ( $572 \mathrm{mg}, 55 \%$ ). ${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): 0.001,0.025\left(2 s, \mathrm{Me}_{2} \mathrm{Si}\right) ; 0.86\left(s,{ }^{t} \mathrm{BuSi}\right) ; 1.46(s, 1 \mathrm{Me}-\mathrm{C}(5)) ; 1.56(s, 1 \mathrm{Me}-\mathrm{C}(5)) ; 1.71-1.78(m$, $\left.1 \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right) ; 2.01-2.06\left(m, 1 \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right) ; 2.17-2.19\left(m, 1 \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right) ; 2.42-2.47\left(m, 1 \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right) ; 2.72-$ $2.94\left(m, 8 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right) ; 3.27-3.68\left(m, 16 \mathrm{H}, 4 \mathrm{H}-\mathrm{C}(5), \mathrm{CH}_{2} \mathrm{O}\right) ; 3.80(\mathrm{~s}, 2 \mathrm{MeO}) ; 3.84-3.85(\mathrm{~m}$, $\left.1 \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)\right) ; 4.12-4.15\left(m, 1 \mathrm{H}-\mathrm{C}\left(3^{\prime}\right), 1 \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)\right) ; 4.20-4.23\left(m, 1 \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 4.66\left(s, \mathrm{NCH}_{2}\right.$-anth $)$; $6.18\left(t, J=7.5,1 \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 6.36\left(d d, J=8.8,5.0,1 \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 6.82-6.84(m, 4$ arom. H$) ; 7.21-7.36(m, 9$ arom. H) ; 7.41-7.50 ( $m, 1 \mathrm{H}-\mathrm{C}(6), 4$ arom. H) ; $7.60(s, 1 \mathrm{H}-\mathrm{C}(6)) ; 7.98(d, J=7.8,2$ arom. H); $8.38(s, 1$ arom. H$) ; 8.51\left(d, J=8.8,2\right.$ arom. H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):-4.81 ;-4.64 ; 11.86 ; 12.48 ; 17.99$; $25.77 ; 37.85 ; 41.04 ; 49.05 ; 40.15 ; 52.10 ; 53.51 ; 54.22 ; 55.32 ; 63.95 ; 68.73 ; 70.11 ; 70.27 ; 70.36 ; 70.39 ; 70.45$; $70.50 ; 72.50 ; 80.34 ; 84.09 ; 84.83 ; 85.20 ; 86.45 ; 86.97 ; 110.43 ; 111.28 ; 113.35 ; 124.95 ; 125.06 ; 125.74 ; 127.22$; $127.68 ; 128.06 ; 128.20 ; 129.11 ; 130.07 ; 130.14 ; 131.38 ; 135.42 ; 135.46 ; 135.68 ; 135.79 ; 144.39 ; 150.44$; 150.57; 158.79; 164.07; 164.10. ESI-MS: $1291.6973\left([M+H]^{+}, \mathrm{C}_{72} \mathrm{H}_{91} \mathrm{~N}_{6} \mathrm{O}_{14} \mathrm{Si}^{+}\right.$; calc. 1291.6362).

5'-O-[Bis(4-methoxyphenyl)phenylmethyl]-3'-O-dephosphinicothymidylyl[12-(anthracen-9-ylmeth-yl)-6,9-dioxa-3,12-diazatetradecane-1,14-diyl]-( $\left.3^{\prime} \rightarrow 5^{\prime}\right)$-thymidine (16). As described for 10, with $\mathbf{1 5}$ $(492 \mathrm{mg}, 389 \mu \mathrm{~mol})$, THF ( 4 ml ), and $\mathrm{Bu}_{4} \mathrm{NF}(112 \mathrm{mg}, 428 \mu \mathrm{~mol})$ for 2.5 h . Workup and CC as described gave 16 ( $371 \mathrm{mg}, 83 \%$ ). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ ): $1.44(s, 1 \mathrm{Me}-\mathrm{C}(5)) ; 1.50(s, 1 \mathrm{Me}-\mathrm{C}(5)) ; 1.82-$ $2.46\left(m, 4 \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right) ; 2.71-2.97\left(m, 8 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right) ; 3.25-3.30\left(m, 1 \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right) ; 3.42-3.74(m, 15 \mathrm{H}$, $\left.\mathrm{H}-\mathrm{C}\left(5^{\prime}\right), \mathrm{CH}_{2} \mathrm{O}\right) ; 3.76(s, 2 \mathrm{MeO}) ; 3.78-3.81\left(m, 1 \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 4.11-4.12\left(m, 1 \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 4.13-4.28$
( $\left.m, 2 \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)\right) ; 4.52\left(d, J=13,1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right.$-anth $) ; 4.62\left(d, J=13,1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right.$-anth $) ; 6.25(t, J=7.8$, $\left.1 \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 6.37\left(d d, J=5.9,8.3,1 \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 6.81-6.85(m, 4 \operatorname{arom} . \mathrm{H}) ; 7.23-7.50(m, 14$ arom. H$) ; 7.61$ $\left(s, 1\right.$ arom. H); $7.97\left(d, J=8.1,2\right.$ arom. H); $8.38\left(s, 1\right.$ arom. H); $8.51(d, J=8.8,2 \mathrm{H}-\mathrm{C}(6)) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ (126 MHz, $\mathrm{CDCl}_{3}$ ): $11.89 ; 12.45 ; 37.86 ; 40.95 ; 49.01 ; 49.07 ; 51.98 ; 53.66 ; 54.06 ; 55.31 ; 63.99 ; 68.45 ; 69.75$; 69.89; 70.32; 70.36; 70.56; 70.74; 71.45; 80.41; 84.07; 84.80; 85.21; 86.16; 86.96; 110.30; 111.32; 113.34; $124.93 ; 125.07 ; 127.22 ; 127.75 ; 128.06 ; 128.20 ; 129.13 ; 129.95 ; 130.14 ; 131.37 ; 131.42 ; 135.41 ; 135.45$; 135.68; $135.90 ; 144.39 ; 150.56 ; 150.69 ; 158.77 ; 164.20 ; 164.23$. ESI-MS: 1177.6360 $\left([M+\mathrm{H}]^{+}\right.$, $\mathrm{C}_{66} \mathrm{H}_{77} \mathrm{~N}_{6} \mathrm{O}_{14}^{+}$; calc. 1177.5497).

5'-O-[Bis(4-methoxyphenyl)phenylmethyl]-3'-O-dephosphinicothymidylyl[12-(anthracen-9-ylmeth-yl)-3-(2,2,2-trifluoroacetyl)-6,9-dioxa-3,12-diazatetradecane-1,14-diyll-( $3^{\prime} \rightarrow 5^{\prime}$ )-thymidine (17). As described for 11, with $16(365 \mathrm{mg}, 310 \mu \mathrm{~mol}), \mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{ml}),{ }^{i} \mathrm{Pr}_{2} \mathrm{EtN}(160 \mu \mathrm{l}, 930 \mu \mathrm{~mol})$, and $\left(\mathrm{CF}_{3} \mathrm{CO}\right)_{2} \mathrm{O}$ $(65 \mu \mathrm{l}, 470 \mu \mathrm{~mol})$ for 20 min . Workup $\mathrm{AcOEt}(15 \mathrm{ml})$ and brine $(10 \mathrm{ml})$ and CC (silica gel, $\mathrm{CHCl} / \mathrm{MeOH}$ $99: 1)$ gave $17(326 \mathrm{mg}, 83 \%) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.41-1.59(m, 6 \mathrm{H}, 2 \mathrm{Me}-\mathrm{C}(5)) ; 1.79-1.83$ $\left(m, 1 \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right) ; 2.12-2.17\left(m, 2 \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right) ; 2.32-2.34\left(m, 1 \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right) ; 2.77-3.73\left(m, 24 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right.$, $\left.\mathrm{CH}_{2} \mathrm{O}, \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right) ; 3.76(s, 2 \mathrm{MeO}) ; 3.91-4.02\left(m, 2 \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 4.03-4.21\left(m, 2 \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)\right) ; 4.56(d, J=$ $12.9,1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}$-anth $) ; 4.64\left(d, J=13.4,1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right.$-anth $) ; 6.24-6.34\left(m, 2 \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 6.83(m, 4$ arom. $\mathrm{H}) ; 7.21-7.48\left(m, 13 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(6^{\prime}\right)\right.$, arom. H); $7.59\left(s, 1 \mathrm{H}-\mathrm{C}\left(6^{\prime}\right)\right) ; 7.96(d, J=8.3,2$ arom. H); $8.36(s, 2$ arom. H) ; $8.57(d, J=9.0,2$ arom. H); 9.94 (br., $2 \mathrm{NH}(3)) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 11.76 ; 11.82$; $12.34 ; 37.43 ; 37.62 ; 40.44 ; 47.92 ; 48.08 ; 48.29 ; 48.42 ; 51.81 ; 53.50 ; 53.77 ; 55.17 ; 63.59 ; 63.85 ; 66.16 ; 67.91$; 68.14; 69.63; 69.90; 70.02; 70.30; 70.56; 70.67; 71.85; 80.43; 80.48; 83.70; 83.83; 84.51; 84.99; 85.90; 86.87; $86.89 ; 110.37 ; 111.34 ; 111.37 ; 113.21 ; 124.84 ; 124.92 ; 125.65 ; 127.13 ; 127.58 ; 127.96 ; 128.02 ; 128.97 ; 129.89$; 129.99; 131.20; 135.15; 135.47; 135.76; 144.18; 150.59; 150.68; 150.71; 158.63; 164.17; 164.23. ESI-MS: $1273.5637\left([M+\mathrm{H}]^{+}\right.$; calc. 1273.5320).

5'-O-[Bis(4-methoxyphenyl)phenylmethyl]-3'-O-dephosphinicothymidylyl[12-(anthracen-9-ylmeth-yl)-3-(2,2,2-trifluoroacetyl)-6,9-dioxa-3,12-diazatetradecane-1,14-diyl]-( $3^{\prime} \rightarrow 5^{\prime}$ )-thymidine 3'-(2-Cyanoethyl N,N-Diisopropylphosophoramidite) (18a). As described for 12, with $17(150 \mathrm{mg}, 118 \mu \mathrm{~mol})$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}(470 \mu \mathrm{l})$, 2-cyanoethyl $N, N, N^{\prime}, N^{\prime}$-tetraisopropylphosphorodiamidite ( $107 \mathrm{mg}, 354 \mu \mathrm{~mol}$ ), and diisopropylammonium $1 H$-tetrazolide ( $3.3 \mathrm{mg}, 47 \mu \mathrm{~mol}$ ) for 3 h . Workup with $\mathrm{AcOEt}(10 \mathrm{ml})$ and sat. aq. $\mathrm{NaHCO}_{3}$ soln. ( 10 ml ) yielded crude 18a, which was used without further purification for the next oligonucleotide synthesis because of the instability on CC purification. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ : $1.14-1.31\left(m, 12 \mathrm{H}, \mathrm{Me} e_{2} \mathrm{CH}\right) ; 1.45-1.53(m, 2 \mathrm{Me}-\mathrm{C}(5)) ; 1.73-2.30\left(m, 4 \mathrm{H}-\mathrm{C}\left(2^{\prime}\right) ; 2.52-2.58(m, 2 \mathrm{H}\right.$, $\left.\mathrm{CH}_{2} \mathrm{~N}\right) ; 2.73-2.90\left(m, 4 \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right) ; 3.19-3.75\left(m, 22 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{O}\right) ; 3.77(s, 2 \mathrm{MeO}) ; 3.95-4.37(m$, $\left.4 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right), \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)\right) ; 4.64-4.65\left(m, \mathrm{CH}_{2} \mathrm{~N}\right.$-anth $) ; 6.20-6.31\left(m, 2 \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 6.83(m, 4$ arom. H$)$; $7.22-7.58(\mathrm{~m}, 13$ arom. H); $7.98(\mathrm{~m}, 2$ arom. H); 8.19 ( $\mathrm{s}, 1$ arom. H); $8.50-8.53$ ( $\mathrm{m}, 2$ arom. H); 9.41 ( $s$, $1 \mathrm{H}, \mathrm{NH}(3)) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 11.61 ; 11.80 ; 11.86 ; 12.31 ; 12.37 ; 14.18 ; 15.26 ; 19.83 ; 19.89$; $20.29 ; 20.35 ; 21.02 ; 22.21 ; 22.83 ; 23.12 ; 23.46 ; 24.37 ; 24.43 ; 24.49 ; 24.51 ; 24.55 ; 24.61 ; 37.52 ; 37.71 ; 39.63$; $39.66 ; 39.70 ; 39.74 ; 43.15 ; 43.18 ; 43.25 ; 43.28 ; 45.53 ; 45.57 ; 45.61 ; 45.65 ; 47.98 ; 48.14 ; 48.31 ; 48.51 ; 52.02$; 53.47; 53.83; 53.90; 55.22; 57.90; 58.05; 58.09; 58.24; 58.60; 58.62; 60.37; 63.65; 63.91; 65.82; 66.26; 67.97; 68.29; 69.98; 70.02; 70.17; 70.40; 70.66; 70.71; 70.80; 74.17; 74.30; 74.43; 74.56; 80.45; 80.50; 83.74; 83.90; $84.58 ; 84.96 ; 85.03 ; 85.13 ; 85.41 ; 85.44 ; 86.95 ; 86.97 ; 110.47 ; 110.59 ; 111.29 ; 111.31 ; 113.28 ; 117.54 ; 117.69$; $124.90 ; 125.00 ; 125.71 ; 127.18 ; 127.20 ; 127.60 ; 127.62 ; 128.00 ; 128.11 ; 129.04 ; 130.06 ; 131.31 ; 131.38$; 135.27; 135.37; $135.43 ; 135.58 ; 144.28 ; 150.38 ; 150.45 ; 150.51 ; 150.53 ; 158.75 ; 163.91 ; 163.94 ; 163.96$; 171.13. ${ }^{31} \mathrm{P}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 203 \mathrm{MHz}\right): 149.24 ; 149.57$. ESI-MS: $1473.5786\left([M+\mathrm{H}]^{+}, \mathrm{C}_{77} \mathrm{H}_{93} \mathrm{~F}_{3} \mathrm{~N}_{8} \mathrm{O}_{16} \mathrm{P}^{+}\right.$; calc. 1473.6106).
$\mathrm{N}-\{2-[2-(2-A m i n o e t h o x y)$ ethoxy]ethyl\}- $\alpha, \alpha$-diphenylbenzenemethanesulfenamide (19). To the soln. of $2,2^{\prime}-\left[\left(\right.\right.$ ethane-1,2-diylbis(oxy)]bis[ethanamine] ( $2.0 \mathrm{ml}, 14 \mathrm{mmol}$ ) in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O} 19: 1(270 \mathrm{ml})$ were added $\mathrm{Na}_{2} \mathrm{CO}_{3}(1.4 \mathrm{~g}, 14 \mathrm{mmol})$ and $\alpha, \alpha$-diphenylbenzenemethanesulfenyl chloride $(2.1 \mathrm{~g}, 6.8 \mathrm{mmol})$. The soln. was stirred at r.t. for 1 h and then diluted with $\mathrm{AcOEt}(500 \mathrm{ml})$. The org. layer was washed once with sat. aq. $\mathrm{NaHCO}_{3}$ soln. $(500 \mathrm{ml})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated and the residue subjected to CC (silica gel, $\left.\mathrm{CHCl}_{3} / \mathrm{MeOH} 96: 4\right): 19(1.6 \mathrm{~g}, 55 \%) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 2.66-2.70(m, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{~N}\right) ; 2.81-2.85\left(m, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right) ; 3.29-3.13\left(t, J=5.4,2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right) ; 3.46-3.49\left(m, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right) ; 3.53-$ $3.55\left(m, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right) ; 7.21-7.48\left(m, 15\right.$ arom. H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 41.58 ; 51.93 ; 69.89$;
69.98; 70.05; 70.36; 70.75; 73.21; 73.24; 126.05; 126.44; 127.59; 128.49; 129.74; 144.06. ESI-MS: 423.6831 $\left([M+\mathrm{H}]^{+}, \mathrm{C}_{25} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}^{+}\right.$; calc. 423.2106).

5'-O-[Bis(4-methoxyphenyl)phenylmethyl]-3'-O-(14,14,14-triphenyl-6,9-dioxa-13-thia-3,12-diazate-tradec-1-yl)thymidine (20). As described for 7, with $\mathbf{3}(1.8 \mathrm{~g}, 3.0 \mathrm{mmol}), \mathrm{CHCl}_{3}(30 \mathrm{ml}), \mathbf{1 9}(1.3 \mathrm{~g}$, $3.0 \mathrm{~mol})$, and $\mathrm{NaBH}(\mathrm{OAc})_{3}(1.3 \mathrm{mg}, 6.0 \mathrm{mmol})$ for 15 min . Workup with $\mathrm{CHCl}_{3}(20 \mathrm{ml})$ and $(1 \times 20 \mathrm{ml})$ and $\mathrm{CC}\left(\mathrm{NH}\right.$-silica gel, hexane/ $\left.\mathrm{CHCl}_{3} 1: 4\right)$ gave $20(2.0 \mathrm{~g}, 66 \%) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.46(s$, $\mathrm{Me}-\mathrm{C}(5)) ; 2.16-2.22\left(m, 1 \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right) ; 2.49-2.53\left(m, 1 \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right) ; 2.61-2.81\left(m, 6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right) ; 3.07-$ $3.61\left(m, 12 \mathrm{H}, 2 \mathrm{H}-\mathrm{C}\left(5^{\prime}\right), \mathrm{CH}_{2} \mathrm{O}\right) ; 3.75(s, 2 \mathrm{MeO}) ; 4.12-4.13\left(m, \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)\right) ; 4.18-4.19$ ( $m$, $\left.\mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 6.35\left(d d, J=5.6,7.8, \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 6.83-7.48\left(m, 28 \mathrm{H}\right.$ of $(\mathrm{MeO})_{2} \operatorname{Tr}$ and TrS$) ; 7.61(s$, $\mathrm{H}-\mathrm{C}(6)) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 12.12 ; 38.14 ; 49.36 ; 49.43 ; 52.39 ; 55.52 ; 64.17 ; 69.22 ; 70.42$; $70.51 ; 70.79 ; 70.84 ; 71.22 ; 80.49 ; 84.30 ; 85.04 ; 87.17 ; 111.43 ; 113.56 ; 126.89 ; 127.42 ; 128.04 ; 128.27 ; 128.42$; 128.96; 130.21; 130.37; 135.66; 135.71; 135.86; 144.53; 144.65; 150.85; 159.00; 164.42. ESI-MS: 993.2842 $\left([M+\mathrm{H}]^{+}, \mathrm{C}_{58} \mathrm{H}_{65} \mathrm{~N}_{4} \mathrm{O}_{9} \mathrm{~S}^{+}\right.$; calc. 993.4472).

3'-O-[3-(Anthracen-9-ylmethyl)-14,14,14-triphenyl-6,9-dioxa-13-thia-3,12-diazatetradec-1-yl]-5'-O-[bis(4-methoxyphenyl)phenylmethyl]thymidine (21). As described for 13, with $\mathbf{2 0}$ ( $2.0 \mathrm{~g}, 2.0 \mathrm{mmol}$ ), of $N, N$-dimethylformamide $(20 \mathrm{ml})$, 9 -(chloromethyl)anthracene $(450 \mathrm{~g}, 2.0 \mathrm{mmol}), \mathrm{Na}_{2} \mathrm{CO}_{3}(4.2 \mathrm{~g}$, $40 \mathrm{mmol})$, and KI ( $33 \mathrm{mg}, 594 \mu \mathrm{~mol}$ ) for 2 h . Workup with $\operatorname{AcOEt}(100 \mathrm{ml})$ and brine $(3 \times 100 \mathrm{ml})$ and CC as described gave $21(1.8 \mathrm{~g}, 77 \%) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.44(s, \mathrm{Me}-\mathrm{C}(5)) ; 1.95-2.03$ $\left(m, 1 \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right) ; 2.22-2.37\left(m, 1 \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right) ; 2.59-2.84\left(m, 6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right) ; 2.95-3.54\left(m, 12 \mathrm{H}, 2 \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right.$, $\left.\mathrm{CH}_{2} \mathrm{O}\right) ; 3.75(s, 2 \mathrm{MeO}) ; 3.88-3.91\left(m, \mathrm{H}-\mathrm{C}\left(4^{\prime}\right), \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 4.62\left(s, \mathrm{NCH}_{2}\right.$-anth $) ; 6.22-6.26(d d, J=5.6$, 8.3, $\left.\mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 6.77-7.46\left(m, 32 \mathrm{H}\right.$ of $(\mathrm{MeO})_{2} \operatorname{Tr}, \mathrm{TrS}$, and anth $) ; 7.54(s, \mathrm{H}-\mathrm{C}(6)) ; 7.94$ ( $m, 2$ arom. H ); 8.02 (br., $1 \mathrm{NH}(3)) ; 8.38\left(s, 1\right.$ arom. H); $8.57\left(m, 2\right.$ arom. H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 11.90 ; 11.92$; $37.89 ; 52.10 ; 52.15 ; 53.84 ; 54.23 ; 55.27 ; 55.29 ; 63.89 ; 68.52 ; 70.11 ; 70.14 ; 70.20 ; 70.61 ; 70.98 ; 79.93 ; 84.14$; $84.83 ; 86.92 ; 111.15 ; 113.31 ; 113.32 ; 124.94 ; 125.26 ; 125.68 ; 126.26 ; 126.66 ; 127.19 ; 127.55 ; 127.82 ; 128.04$; 128.19; 128.75; 129.01; 129.99; 130.14; 130.49; 131.39; 131.46; 135.46; 144.30; 144.43; 150.41; 158.76; 163.98. ESI-MS: $1183.5185\left([M+\mathrm{H}]^{+}, \mathrm{C}_{73} \mathrm{H}_{75} \mathrm{~N}_{4} \mathrm{O}_{9} \mathrm{~S}^{+}\right.$; calc. 1183.5254).

3'-O-\{2-\{\{2-[2-(2-Aminoethoxy)ethoxy]ethyl\}(anthracen-9-ylmethyl)amino\}ethyl\}-5'-O-[bis(4-methoxyphenyl)phenylmethyl fthymidine (22). To a soln. of $\mathbf{2 1}(1.7 \mathrm{~g}, 1.4 \mathrm{mmol})$ in toluene ( 14 ml ) was added tributylstannane ( $2.9 \mathrm{ml}, 11 \mathrm{mmol}$ ), and the mixture was stirred at $130^{\circ}$ for 3 h . The mixture was subjected to $\mathrm{CC}\left(\mathrm{NH}\right.$-silica gel, $\left.\mathrm{CHCl}_{3}\right): 22(647 \mathrm{mg}, 50 \%) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.49(s$, $\mathrm{Me}-\mathrm{C}(5)) ; 1.97-2.29\left(m, 2 \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right) ; 2.77-2.86\left(m, 6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right) ; 3.10-3.54\left(m, 12 \mathrm{H}, 2 \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right.$, $\left.\mathrm{CH}_{2} \mathrm{O}\right) ; 3.72(s, 2 \mathrm{MeO}) ; 3.91-3.93\left(m, \mathrm{H}-\mathrm{C}\left(4^{\prime}\right), \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 4.61\left(s, \mathrm{CH}_{2} \mathrm{~N}-\right.$ anth $) ; 6.29-6.31(t, J=6.3$, $\left.\mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 6.77-7.46\left(m, 17 \mathrm{H}\right.$ of $(\mathrm{MeO})_{2} \operatorname{Tr}$ and anth $) ; 7.51(\mathrm{~s}, \mathrm{H}-\mathrm{C}(6)) ; 7.91(m, 2$ arom. H$) ; 8.38(s, 1$ arom. H) ; $8.52\left(m, 2\right.$ arom. H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 13.70 ; 16.22 ; 27.03 ; 28.20 ; 37.71 ; 41.56$; $52.02 ; 53.76 ; 54.06 ; 55.14 ; 63.80 ; 68.35 ; 70.00 ; 70.10 ; 70.18 ; 73.25 ; 79.84 ; 83.88 ; 84.70 ; 86.74 ; 113.16$; 113.18; 124.80; 125.13; 125.54; 127.02; 127.41; 127.90; 128.07; 128.87; 128.97; 130.01; 130.37; 131.26; 131.32; 135.39; 144.38; 158.61. ESI-MS: $909.2227\left([M+\mathrm{H}]^{+}, \mathrm{C}_{54} \mathrm{H}_{61} \mathrm{~N}_{4} \mathrm{O}_{9}^{+}\right.$; calc. 909.4439).

5'-O-[Bis(4-methoxyphenyl)phenylmethyl]-3'-O-dephosphinicothymidylyl[3-(anthracen-9-ylmeth-yl)-6,9-dioxa-3,12-diazatetradecane-1,14-diyl]-(3' $\rightarrow 5^{\prime}$ )-3'-O-[(tert-butyl)dimethylsilyl]thymidine (23). As described for 7, with $22(647 \mathrm{mg}, 713 \mu \mathrm{~mol})$ and $5(284 \mathrm{mg}, 713 \mu \mathrm{~mol})$ in $\mathrm{CHCl}_{3}(7 \mathrm{ml})$ and $\mathrm{NaBH}(\mathrm{OAc})_{2}(302 \mathrm{mg}, 1.4 \mathrm{mmol})$ for 5 min . Workup with $\mathrm{CHCl}_{3}(10 \mathrm{ml})$ and brine $(1 \times 20 \mathrm{ml})$ and CC (silica gel, $\left.\mathrm{CHCl}_{3} / \mathrm{MeOH} 96: 4\right)$ gave 23 ( $393 \mathrm{mg}, 43 \%$ ). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ ): $0.10\left(s, \mathrm{Me}_{2} \mathrm{Si}\right)$; $0.82\left(s,{ }^{t} \mathrm{BuSi}\right) ; 1.41(s, 1 \mathrm{Me}-\mathrm{C}(5)) ; 1.84(s, 1 \mathrm{Me}-\mathrm{C}(5)) ; 1.91-2.23\left(m, 4 \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right) ; 2.70-2.81(m, 8 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{~N}\right) ; 3.02-3.61\left(m, 16 \mathrm{H}, 4 \mathrm{H}-\mathrm{C}\left(5^{\prime}\right), \mathrm{CH}_{2} \mathrm{O}\right) ; 3.69(s, 2 \mathrm{MeO}) ; 3.82-3.99\left(m, 2 \mathrm{H}-\mathrm{C}\left(4^{\prime}\right), 1 \mathrm{H}-\left(3^{\prime}\right)\right)$; $4.32\left(m, 1 \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 4.56\left(s, \mathrm{CH}_{2} \mathrm{~N}-\right.$ anth $) ; 6.29-6.31\left(m, 2 \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 6.71-7.41\left(m, 17 \mathrm{H}\right.$ of $(\mathrm{MeO}){ }_{2} \operatorname{Tr}$ and anth); $7.48(s, 1 \mathrm{H}-\mathrm{C}(6)) ; 7.87\left(m, 2\right.$ arom. H); $8.38\left(s, 1\right.$ arom. H); $8.47\left(m, 2\right.$ arom. H). ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (126 MHz, $\mathrm{CDCl}_{3}$ ): $-4.83 ;-4.65 ; 11.88 ; 12.69 ; 17.94 ; 25.74 ; 37.81 ; 40.99 ; 48.65 ; 48.89 ; 52.06 ; 53.74$; $54.22 ; 63.81 ; 68.34 ; 69.66 ; 70.01 ; 70.07 ; 70.29 ; 70.42 ; 70.55 ; 72.09 ; 79.89 ; 84.03 ; 84.70 ; 85.25 ; 86.17 ; 86.83$; $110.76 ; 111.17 ; 113.24 ; 124.88 ; 125.18 ; 125.63 ; 127.10 ; 127.48 ; 127.97 ; 128.10 ; 128.93 ; 130.00 ; 130.06$; 130.39; 131.30; 131.37; 135.38; 135.59; 135.97; 144.35; 150.55; 150.62; 158.67; 164.18. ESI-MS: 1291.6952 $\left([M+H]^{+}, \mathrm{C}_{72} \mathrm{H}_{91} \mathrm{~N}_{6} \mathrm{O}_{14} \mathrm{Si}^{+}\right.$; calc. 1291.6362).

5'-O-[Bis(4-methoxyphenyl)phenylmethyl]-3'-O-dephosphinicothymidylyl[3-(anthracen-9-ylmeth-yl)-6,9-dioxa-3,12-diazatetradecane-1,14-diyl]-( $\left.3^{\prime} \rightarrow 5^{\prime}\right)$-thymidine (24). As described for 10, with 23
( $609 \mathrm{mg}, 472 \mu \mathrm{~mol}$ ), THF ( 5 ml ), and $\mathrm{Bu}_{4} \mathrm{NF}(197 \mathrm{mg}, 755 \mu \mathrm{~mol})$ for 8 h . Workup and CC as described gave $24(419 \mathrm{mg}, 75 \%)$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.45(s, 1 \mathrm{Me}-\mathrm{C}(5)) ; 1.88(s, 1 \mathrm{Me}-\mathrm{C}(5)) ; 1.96-$ $2.32\left(m, 4 \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right) ; 2.72-2.85\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right) ; 3.07-3.66\left(m, 16 \mathrm{H}, 4 \mathrm{H}-\mathrm{C}\left(5^{\prime}\right), \mathrm{CH}_{2} \mathrm{O}\right) ; 3.74$ ( $s$, $2 \mathrm{MeO}) ; 3.86-3.98\left(m, 2 \mathrm{H}-\mathrm{C}\left(4^{\prime}\right), 1 \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 4.44\left(m, 1 \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 4.61\left(s, \mathrm{CH}_{2} \mathrm{~N}\right.$ anth $) ; 6.26-6.30$ $\left(m, 2 \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 6.77-7.46\left(m, 17 \mathrm{H}\right.$ of $(\mathrm{MeO})_{2} \operatorname{Tr}$ and anth); $7.54(s, \mathrm{H}-\mathrm{C}(6)) ; 7.92(d, J=8.3,2$ arom. $\mathrm{H}) ; 8.36(s, 1$ arom. H$) ; 8.48\left(d, J=8.8,2\right.$ arom. H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 11.93 ; 12.77 ; 37.84$; 40.52; 48.67; 48.88; 52.11; 53.81; 54.29; 55.29; 63.88; 68.42; 69.98; 70.08; 70.12; 70.24; 70.40; 70.53; 71.20; $79.98 ; 84.09 ; 84.76 ; 84.94 ; 85.39 ; 86.90 ; 110.78 ; 111.26 ; 113.28 ; 113.29 ; 1224.95 ; 125.23 ; 125.70 ; 127.16$; $127.54 ; 128.03 ; 128.15 ; 128.98 ; 130.11 ; 130.43 ; 131.34 ; 131.42 ; 135.43 ; 135.67 ; 135.97 ; 144.40 ; 150.68$; 150.74; 158.71; 164.28; 164.34. ESI-MS: $1177.4326\left([M+\mathrm{H}]^{+}, \mathrm{C}_{66} \mathrm{H}_{77} \mathrm{~N}_{6} \mathrm{O}_{14}^{+}\right.$; calc. 1177.5497).

5'-O-[Bis(4-methoxyphenyl)phenylmethyl]-3'-O-dephosphinicothymidylyl[3-(anthracen-9-ylmeth-yl)-12-(trifluoroacetyl)-6,9-dioxa-3,12-diazatetradecane-1,14-diyl]-( $3^{\prime} \rightarrow 5^{\prime}$ )-thymidine (25). As described for 11, with $24(406 \mathrm{mg}, 345 \mu \mathrm{~mol}), \mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{ml}),{ }^{i} \mathrm{Pr}_{2} \mathrm{EtN}(177 \mu \mathrm{l}, 1.0 \mathrm{mmol})$, and $\left(\mathrm{CF}_{3} \mathrm{CO}\right)_{2} \mathrm{O}(72 \mu \mathrm{l}$, $517 \mu \mathrm{~mol})$ for 30 min . Workup with $\mathrm{AcOEt}(20 \mathrm{ml})$ and brine $(20 \mathrm{ml})$ and $\mathrm{CC}\left(\right.$ silica gel, $\mathrm{CHCl}_{3} / \mathrm{MeOH}$ $99: 1)$ gave $25(350 \mathrm{mg}, 80 \%) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.46(\mathrm{~s}, 1 \mathrm{Me}-\mathrm{C}(5)) ; 1.88(s, 1 \mathrm{Me}-\mathrm{C}(5))$; 2.00-2.31 ( $m, 4 \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)$ ); 2.77-2.84 ( $m, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}$ ); 3.08-3.72 ( $m, 20 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{O}$ ); 3.74 ( $s$, $2 \mathrm{MeO}) ; 3.77-3.98\left(m, 2 \mathrm{H}-\mathrm{C}\left(4^{\prime}\right), 1 \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 4.29-4.34\left(m, 1 \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 4.61\left(s, \mathrm{CH}_{2} \mathrm{~N}-\right.$ anth $) ; 6.23-$ $6.30\left(m, 2 \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 6.77-7.47\left(m, 17 \mathrm{H}\right.$ of $(\mathrm{MeO})_{2} \operatorname{Tr}$ and anth); $7.56(s, \mathrm{H}-\mathrm{C}(6)) ; 7.93(d, J=8.8,2$ arom. H) ; $8.38\left(s, 1\right.$ arom. H) ; $8.57\left(d, J=8.3,2\right.$ arom. H); $9.60(s, 2 \mathrm{NH}(3)) .{ }^{13} \mathrm{C}-\mathrm{NMR}(126 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): 11.91 ; 12.69 ; 12.73 ; 37.86 ; 40.17 ; 40.33 ; 47.31 ; 47.70 ; 48.14 ; 52.06 ; 53.90 ; 54.14 ; 54.22 ; 55.30 ; 63.91$; $67.96 ; 68.36 ; 69.83 ; 70.01 ; 70.09 ; 70.28 ; 70.49 ; 70.67 ; 70.95 ; 71.22 ; 71.42 ; 80.12 ; 84.16 ; 84.81 ; 85.00 ; 85.15$; $85.25 ; 85.47 ; 86.95 ; 110.96 ; 111.35 ; 111.37 ; 113.30 ; 113.31 ; 125.00 ; 125.18 ; 125.37 ; 125.75 ; 127.20 ; 127.61$; $128.05 ; 128.16 ; 128.29 ; 129.04 ; 129.10 ; 130.13 ; 130.33 ; 131.36 ; 131.43 ; 135.40 ; 135.74 ; 136.00 ; 144.38$; $150.64 ; 150.67 ; 150.70 ; 150.72 ; 158.74 ; 164.05 ; 164.12 ; 164.17 ; 164.23 ; 164.28$. ESI-MS: 1273.5462 ([ $M+$ $\mathrm{H}]^{+}, \mathrm{C}_{68} \mathrm{H}_{76} \mathrm{~F}_{3} \mathrm{~N}_{6} \mathrm{O}_{15}^{+}$; calc. 1273.5320).

5'-O-[Bis(4-methoxyphenyl)phenylmethyl]-3'-O-dephosphinicothymidylyl[3-(anthracen-9-ylmeth-yl)-12-(trifluoroacetyl)-6,9-dioxa-3,12-diazatetradecane-1,14-diyl]-( $\left.3^{\prime} \rightarrow 5^{\prime}\right)$-thymidine $3^{\prime}$-(2-Cyanoethyl $\mathrm{N}, \mathrm{N}$-Diisopropylphosphoramidite) (18b). As decribed for 12, with $\mathbf{2 5}(150 \mathrm{mg}, 118 \mu \mathrm{~mol}), \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (470 $\mu \mathrm{l}$ ), 2-cyanoethyl $N, N, N^{\prime}, N^{\prime}$-tetraisopropylphosphorodiamidite ( $85 \mathrm{mg}, 282 \mu \mathrm{~mol}$ ), and diisopropylammonium $1 H$-tetrazolide ( $3.3 \mathrm{mg}, 47 \mu \mathrm{~mol}$ ) for 4 h . Workup with $\mathrm{AcOEt}(10 \mathrm{ml})$ and sat. aq. $\mathrm{NaHCO}_{3}$ soln. ( 10 ml ) yielded crude $\mathbf{1 8 b}$, which was used without further purification for the next oligonucleotide synthesis because of the instability on CC purification. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.15-1.31(m, 12 \mathrm{H}$, $\left.M e_{2} \mathrm{CH}\right) ; 1.46-1.91(m, 2 \mathrm{Me}-\mathrm{C}(5)) ; 1.97-2.42\left(m, 4 \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right) ; 2.58-2.62\left(m, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right) ; 2.74-2.86$ $\left(m, 4 \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right) ; 3.08-3.84\left(m, 22 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{O}\right) ; 3.75(s, 2 \mathrm{MeO}) ; 3.88-4.49\left(m, 4 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right.$, $\left.\mathrm{H}-\mathrm{C}\left(4^{\prime}\right)\right)$; $4.63\left(s, \mathrm{CH}_{2} \mathrm{~N}\right.$-anth $) ; 6.23-6.33\left(m, 2 \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 6.77-8.53(m, 24 \mathrm{H}, 2 \mathrm{H}-\mathrm{C}(6)$, 22 arom. H); $9.13(s, \mathrm{NH}(3)) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 11.98 ; 12.73 ; 2048 ; 20.53 ; 21.14 ; 22.32 ; 22.93 ; 22.96$; $23.06 ; 23.22 ; 23.56 ; 24.48 ; 24.53 ; 24.57 ; 24.64 ; 24.67 ; 24.70 ; 24.73 ; 37.86 ; 39.38 ; 43.31 ; 43.29 ; 43.39$; $45.62 ; 45.66 ; 47.34 ; 47.56 ; 47.80 ; 47.92 ; 47.99 ; 52.16 ; 53.91 ; 54.30 ; 55.32 ; 57.97 ; 58.03 ; 58.13 ; 58.18 ; 63.91$; $67.81 ; 68.04 ; 68.35 ; 68.48 ; 69.41 ; 69.59 ; 70.10 ; 70.21 ; 70.26 ; 70.51 ; 70.72 ; 70.91 ; 71.04 ; 73.28 ; 73.41 ; 73.82$; $73.98 ; 80.03 ; 80.06 ; 84.15 ; 84.81 ; 85.08 ; 85.11 ; 85.19 ; 85.24 ; 85.27 ; 86.94 ; 111.05 ; 111.13 ; 111.16 ; 111.22$; $111.25 ; 113.31 ; 113.32 ; 116.03 ; 117.77 ; 117.83 ; 124.99 ; 125.23 ; 124.72 ; 127.20 ; 127.59 ; 128.05 ; 128.19$; $129.04 ; 130.14 ; 130.41 ; 130.44 ; 131.38 ; 131.46 ; 135.45 ; 135.62 ; 135.70 ; 135.72 ; 135.99 ; 136.03 ; 144.42$; $150.42 ; 150.49 ; 150.54 ; 150.57 ; 158.77 ; 163.85 ; 163.94 ; 163.96 .{ }^{31} \mathrm{P}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 203 \mathrm{MHz}\right): 149.60$; 149.78. ESI-MS: $1473.5905\left([M+H]^{+}, \mathrm{C}_{77} \mathrm{H}_{92} \mathrm{~F}_{3} \mathrm{~N}_{8} \mathrm{O}_{16} \mathrm{P}^{+}\right.$; calc. 1473.6399).

Oligonucleotide Synthesis. Phosphoramidites 12, 18a, and 18b and the commercially available deoxynucleoside phosphoroamidites were used. The $3^{\prime}$-half of each DNA, d( $\mathrm{Y}^{1} \mathrm{Y}^{2}$ TCGAG), was synthesized on a CPG support by use of an $A B I-392$ DNA synthesizer. After the $(\mathrm{MeO})_{2} \operatorname{Tr}$ group at the $5^{\prime}$-terminal nucleotide ( $\mathrm{Y}^{1}$ ) was removed, the CPG was transferred to a glass syringe. The appropriate phosphoramidite, 12, 18a, or 18b, was coupled to the free $5^{\prime}$ - OH group according to the following manual coupling procedure: 1) Coupling: 20 equiv. of phosphoramidite, 80 equiv. of $1 H$-tetrazole, MeCN $(250 \mu \mathrm{l}), 5 \mathrm{~min} .2)$ Capping: 1.1m $\mathrm{Ac}_{2} \mathrm{O}, 133 \mathrm{~mm} N, N$-dimethylpyridin-4-amine in pyridine, 2 min .3 ) Oxidation: $0.1 \mathrm{~m}_{2}$ in pyridine $/ \mathrm{H}_{2} \mathrm{O} 9: 1$. Subsequently, the CPG supports were transferred to the column for the DNA synthesizer, and the $5^{\prime}$-half parts of each DNA, $\mathrm{d}\left(\mathrm{GCTCX}^{1} \mathrm{X}^{2}\right)$, were elongated on the
synthesizer. After the cleavage from the solid supports, the protecting groups at the nucleobases and phosphates and the $\mathrm{CF}_{3} \mathrm{CO}$ groups at the amino groups were removed by treatment with aq. ammonia overnight. The desired oligonucleotides were purified by anion-exchange HPLC (Genpak Fax, 10 mm $\mathrm{Na}_{3} \mathrm{PO}_{4}$ applying of the gradient $1.0 \mathrm{~m} \mathrm{NaCl} \rightarrow 10 \mathrm{~mm} \mathrm{Na}_{3} \mathrm{PO}_{4}$ in $1 \% / \mathrm{min}$ ). The structures of the oligonucleotides were confirmed by the MALDI-TOF-MS.
$5^{\prime}-d(G C T C A G[t t] G A T C G A G)-3^{\prime}:($ ODN1 $)$ yield $16 \%$. MALDI-TOF-MS: 4750.6 (calc. 4745.0 ).
$5^{\prime}-d\left(G C T C A G\left[t t^{*}\right] G A T C G A G\right)-3^{\prime}:($ ODN2a) yield 12\%. MALDI-TOF-MS: 4932.0 (calc. 4933.1).
$5^{\prime}-d\left(G C T C A G\left[t^{*} t\right] G A T C G A G\right)-3^{\prime}:($ ODN2b $)$ yield 11\%. MALDI-TOF-MS: 4931.6 (calc. 4933.1).
$5^{\prime}-d\left(G C T C C T\left[t t^{*}\right] A G T C G A G\right)-3^{\prime}:($ ODN3a) yield $9 \%$, MALDI-TOF-MS: 4882.8 (calc. 4884.1).
$5^{\prime}-d\left(G C T C C T\left[t^{*} t\right] A G T C G A G\right)-3^{\prime}:(\mathrm{ODN3b})$ yield $19 \%$. MALDI-TOF-MS: 4883.0 (calc. 4884.1).
Fluorescence Spectra. For the natural-type ODNs, the $\varepsilon_{260}$ were calculated according to [47]. The $\varepsilon_{260}$ of an ODN incorporating a long-chain linker without the anthracene moiety was assumed to be identical to that of the natural-type ODN having the same nucleotide sequences. In the case of an ODN having an anthracene moiety, the $\varepsilon_{260}$ was estimated as the sum of $\varepsilon_{260}$ of the ODN and 5500. ODN1: 145700; ODN2a: 151200; ODN2b: 151200; ODN3a: 143800; ODN3b: 143800. The sample ODNs were dissolved in 0.1 m Tris $\cdot \mathrm{HCl}, 0.1 \mathrm{~m} \mathrm{NaCl}$. ODN concentrations are described below. The directly observed fluorescent intensities were divided by these concentrations to give the fluorescent intensities of the hypothetical 1 m solns. and used to draw Figs. 3 and 4.

Experiment shown in Fig. 3: Single strand ODN2a, $104 \mathrm{~nm} ;$ ODN2b, $102 \mathrm{~nm} ;$ ODN3a, 140 nm ; ODN3b, 140 nm . Double strand ODN2a•ODN4, 125 nm ; ODN2b•ODN4: $120 \mathrm{~nm} ;$ ODN3a•ODN5, $121 \mathrm{~nm} ;$ ODN3b-ODN5, 120 nm . The measurements were carried out at $10^{\circ}$.

Experiment shown in Fig. 4: ODN3a•ODN5, 120 nm ; ODN3a•ODN6, $130 \mathrm{~nm} ;$ ODN3a• ODN7, 130 nm ; ODN3a•ODN8, 130 nm ; ODN3a•ODN9, 80 nm . The measurements were carried out at pH 8.0.

## REFERENCES

[1] J. Lebreton, A. Waldner, V. Fritsch, R. M. Wolf, A. D. Mesmaeker, Tetrahedron Lett. 1994, 35, 5225.
[2] J.-J. Vasseur, F. Debart, Y. S. Sanghvi, P. D. Cook, J. Am. Chem. Soc. 1992, 114, 4006.
[3] F. Dabart, J.-J. Vasseur, Y. S. Sanghvi, P. D. Cook, Bioorg. Med. Chem. Lett. 1992, 2, 1479.
[4] G. H. Veeneman, G. A. van der Marted, H. van den Elst, J. H. van Boom, Tetrahedron 1991, $47,1547$.
[5] M. Matteucci, Tetrahedron Lett. 1990, 31, 2385.
[6] R. J. Jones, K.-Y. Lin, J. F. Milligan, S. Wadwani, M. D. Matteucci, J. Org. Chem. 1993, 58, 2983.
[7] M. Matteucci, K.-Y. Lin, S. Butcher, C. Moulds, J. Am. Chem. Soc. 1991, 113, 7767.
[8] E. Rozner, R. Stromberg, J. Org. Chem. 1991, 62, 1846.
[9] D. S. Jones, J. R. Tittensor, J. Chem. Soc., Chem. Commun. 1969, 1240.
[10] M. P. Mertes, E. A. Coats, J. Med. Chem. 1969, 12, 154.
[11] K. M. K. Kutterer, G. Just, Bioorg. Med. Chem. Lett. 1994, 4, 435.
[12] K. Sato, K. Seio, M. Sekine, J. Am. Chem. Soc. 2002, 124, 12715.
[13] K. Sato, R. Tawarada, K. Seio, M. Sekine, Eur. J. Org. Chem. 2004, 2142.
[14] R. O. Dempcy, O. Almarsson, T. C. Bruice, Proc. Natl. Acad. Sci. U.S.A. 1994, 91, 7864.
[15] W. Pils, R. Micura, Nucleic Acids. Res. 2000, 28, 1859.
[16] M. Durand, K. Chevrie, M. Chassignol, N. T. Thuong, J. C. Maurizot, Nucleic Acids Res. 1990, 18, 6353.
[17] S. Rummney IV, E. T. Kool, J. Am. Chem. Soc. 1995, 117, 5635.
[18] S. Altmann, A. M. Labhardt, D. Bur, C. Lehmann, W. Bannwarth, M. Billeter, K. Wüthrich, W. Leupin, Nucleic Acids Res. 1995, 23, 4827.
[19] M. Durand, S. Peloille, N. T. Thuong, J. C. Maurizot, Biochemistry 1992, 31, 9197.
[20] D. A. Horne, P. B. Dervan, J. Am. Chem. Soc. 1990, 112, 2435.
[21] D. J. Kessler, B. M. Pettitt, Y.-K. Cheng, S. R. Smith, K. Jayaraman, H. M. Muv, M. E. Hogan, Nucleic Acids Res. 1993, 21, 4810.
[22] P. Hendry, M. J. Moghaddam, M. J. McCall, P. A. Jennings, S. Ebel, T. Brown, Biochim. Biophys. Acta 1994, 1219, 405.
[23] J. B. Thomson, T. Tuschl, F. Eckstein, Nucleic Acids Res. 1993, 21, 5600.
[24] H.-D. Junker, S. T. Hoehn, R. C. Bunt, V. Marathius, J. Chen, C. J. Turner, J. Stubbe, Nucleic Acids Res. 2002, 30, 5497.
[25] D. Yu, E. R. Kandimalla, Y. Cong, J. Tang, J.-Y. Tang, Q. Zhao, S. Agrawal, J. Med. Chem. 2002, 45, 4540.
[26] M. Nilsson, H. Malmgren, M. Samiotaki, M. Kwiatkowski, B. P. Chowdhary, U. Landegre, Science (Washington, DC, U.S.) 1994, 265, 2085.
[27] N. G. Dolinnaya, M. Blumenfield, I. N. Merenkova, T. S. Aretskaya, N. Krynetskaya, M. G. Ivanovskaya, M. Vasseur, Z. A. Shabarova, Nucleic Acids Res. 1993, 21, 5403.
[28] P. L. Richardson, A. Schepartz, J. Am. Chem. Soc. 1991, 113, 5109.
[29] S. T. Cload, A. Schepartz, J. Am. Chem. Soc. 1991, 113, 6324.
[30] M. Salunkhe, T. Wu, R. L. Letsinger, J. Am. Chem. Soc. 1992, 114, 8768.
[31] M. G. Paulick, K. M. Hart, K. M. Brinner, M. Tjandra, D. H. Charych, R. N. Zuckermann, J. Comb. Chem. 2006, 8, 417.
[32] B. P. Branchaud, J. Org. Chem. 1983, 48, 3538.
[33] B. P. Branchaud, J. Org. Chem. 1983, 48, 3531.
[34] K. Seio, M. Sekine, J. Chem. Soc., Perkin Trans. 1 1993, 3087.
[35] K. Seio, E. Utagawa, M. Sekine, Helv. Chim. Acta 2004, 87, 2318.
[36] M. Ueki, M. Honda, Y. Kazama, T. Katoh, Synthesis 1994, 21.
[37] L. Zervas, D. Borovas, E. Gazis, J. Am. Chem. Soc. 1963, 85, 3660.
[38] L. Fabbrizzi, M. Licchelli, P. Pallavicini, A. Taglietti, Inorg. Chem. 1996, 35, 1733.
[39] S. A. De Silva, B. Amorelli, D. C. Isidor, K. C. Loo, K. E. Crooker, Y. E. Pena, Chem. Commun. 2002, 1360.
[40] A. Chatterjee, T. M. Suzuki, Y. Takahasi, D. A. P. Tanaka, Chem.-Eur. J. 2003, 9, 3920.
[41] M. Ayadim, J. L. H. Jiwan, A. P. de Silva, J. P. Soumillion, Tetrahedron Lett. 1996, 37, 7039.
[42] D. A. P. Tanaka, M. S. C. Alvarado, M. A. L. Tanco, Y. Takahashi, A. Chatterjee, H. Suzuki, T. M. Suzuki, Anal. Sci. 2005, 21, 417.
[43] S. Arimori, C. J. Ward, T. D. James, Chem. Commun. 2001, 2018.
[44] C. V. Kumar, E. H. A. Punzalan, W. B. Tan, Tetrahedron 2000, 56, 7027.
[45] N. K. Modukuru, K. J. Snow, B. S. Perrin Jr., J. Thota, C. V. Kumar, J. Phys. Chem. 2005, 109, 11810.
[46] K. Yamana, R. Aota, H. Nakano, Tetrahedron Lett. 1995, 36, 8427.
[47] P. N. Borer, 'Handbook of Biochemistry and Molecular Biology: Nucleic Acids', Ed. G. D. Fasman, 3rd edn., CRC Press, Cleveland, OH. 1975, p. 589.

